Tris(pyrazolyl)hydroborato Complexes of Cadmium: A Bidentate Nitrate Derivative and Its **Relevance to Carbonic Anhydrase Activity**

Adrian Looney, Akila Saleh,[‡] Yonghui Zhang, and Gerard Parkin^{*}

Department of Chemistry, Columbia University, New York, New York 10027

Received August 18, 1993®

The synthesis and structures of a series of [tris(pyrazolyl)hydroborato]cadmium complexes, $\{n^3-HB(3,5-Pr^i_2pz)_3\}$ -CdI, $\{\eta^3$ -HB(3-Bu^tpz)₃]CdI, $\{\eta^3$ -HB(3-Bu^t-5-Mepz)₃]CdCH₃, and $\{\eta^3$ -HB(3-Bu^t-5-Mepz)₃]Cd(η^2 -O₂NO), are reported. The complex $\{\eta^3$ -HB(3-But-5-Mepz)_3 Cd(η^2 -O₂NO) exhibits bidentate coordination of the nitrate ligand [2.272(6) and 2.295(7) Å], in contrast to the unidentate coordination mode that is observed in the related zinc derivative $[\eta^3$ -HB(3-Bu^tpz)_3]Zn(η^1 -ONO₂). Cadmium-substituted carbonic anhydrase is less active than the zinc enzyme, and although many factors, such as the higher pK_a of the coordinated water, may be responsible for the lower activity, the observation of bidentate coordination in η^3 -HB(3-But-5-Mepz)₃Cd(η^2 -O₂NO) supports the notion that facile access to a unidentate bicarbonate intermediate may be an important requirement for carbonic anhydrase activity. $\{\eta^3$ -HB(3,5-Pri₂pz)₃CdI is monoclinic, $P2_1/m$ (No. 11), with a = 9.840(2) Å, b = 16.449(9)Å, c = 10.633(2) Å, $\beta = 103.04(2)^{\circ}$, V = 1677(1) Å³, and Z = 2. { η^{3} -HB(3-Bu^tpz)₃}CdI is tetragonal, $P\bar{4}2_{1}m$ (No. 113), with a = b = 16.938(2) Å, c = 9.915(2) Å, V = 2845(1) Å³, and Z = 4. { η^3 -HB(3-But-5-Mepz)_3CdCH₃ is cubic, $I\bar{4}3d$ (No. 220), with a = 22.747(2) Å, V = 11770(2) Å³, and Z = 16. { η^{3} -HB(3-Bu^t-5-Mepz)₃}Cd(η^{2} - O_2NO is monoclinic, $P2_1/n$ (No. 14), with a = 10.690(1) Å, b = 17.233(3) Å, c = 16.272(2) Å, $\beta = 91.70(1)^\circ$, V = 2996(1) Å³, and Z = 4.

Introduction

We recently reported the application of sterically-demanding tris(pyrazolyl)hydroborato ligands [HB(3,5-RR'pz)₃]- (RR'pz = substituted pyrazole)¹ to an investigation of the chemistry of a series of monomeric alkyl, hydride, and hydroxide derivatives of zinc, such as $\{\eta^3-HB(3-Bu^tpz)_3\}ZnCH_3, \{\eta^3-HB(3-Bu^tpz)_3\}$ -ZnH, and $\{\eta^3$ -HB(3-Bu^t-5-Mepz)_3\}ZnOH (3-Bu^tpz = 3-C_3N_2- $Bu^{t}H_{2}$; 3- Bu^{t} -5-Mepz = 3- Bu^{t} -5-MeC₃N₂H).²⁻⁷ Our specific interest in the hydroxide derivative $\{\eta^3-HB(3-Bu^t-5-Mepz)_3\}$ -ZnOH⁴⁻⁷ derives from its structural relationship to that of the active site of the enzyme carbonic anhydrase $[(His)_3Zn(OH_2)]^{2+}$ (His = histidine).^{8,9} Thus, the three nitrogen atom donors of the tris(pyrazolyl)hydroborato ligand bind to the zinc center in $\{\eta^3$ -HB(3-Bu¹-5-Mepz)₃ZnOH by a manner closely analogous to those of the histidine imidazole groups in carbonic anhydrase. Further to the structural relationship, reactivity studies on $\{\eta^3$ -HB(3-But-5-Mepz)₃]ZnOH have also revealed a functional equivalence to the enzyme.4-7,10

Metal-substituted (e.g., Mn, Co, Ni, Cu, Cd, and Hg) carbonic anhydrases have also been actively investigated in order to provide information concerned with both enzyme structure and activity.9,11-13 Such studies are in part a consequence of the lack of suitable spectroscopic probes for the diamagnetic $d^{10} Zn(II)$ center of the native enzyme. In this regard, cadmium-substituted

- (4) Alsfasser, R.; Trofimenko, S.; Looney, A.; Parkin, G.; Vahrenkamp, H. Inorg. Chem. 1991, 30, 4098-4100.
- (5) Looney, A.; Parkin, G.; Alsfasser, R.; Ruf, M.; Vahrenkamp, H. Angew. Chem, Int. Ed. Engl. 1992, 31, 92–93. (6) Han, R.; Looney, A.; McNeill, K.; Parkin, G.; Rheingold, A. L.; Haggerty,
- B. S. J. Inorg. Biochem. 1993, 49, 105-121
- (7) Looney, A.; Han, R.; McNeill, K.; Parkin, G. J. Am. Chem. Soc. 1993, 115, 4690-4697
- (a) Eriksson, A. E.; Jones, T. A.; Liljas, A. Proteins: Struct. Funct. Gen.
 1988, 4, 274–282. (b) Nair, S. K.; Christianson, D. W. J. Am. Chem. Soc. 1991, 113, 9455–9458. (8)

carbonic anhydrase has been studied by ¹¹³Cd NMR spectroscopy.^{14,15} However, the activity of cadmium-substituted carbonic anhydrase is reduced substantially from that of the zinc enzyme at pH 7.13,16 Prompted by the reduced activity for the cadmiumsubstituted enzyme, we have initiated a study of [tris(pyrazolyl)-

- (a) Silverman, D. N.; Lindskog, S. Acc. Chem. Res. 1988, 21. 30-36. (b) Banci, L.; Bertini, I.; Luchinat, C.; Donaire, A.; Martinez, M.-J.; Moratal Mascarell, J. M. Comments Inorg. Chem. 1990, 9, 245-261. (c) Wooley, P. Nature 1975, 258, 677-682. (d) Bertini, I.; Luchinat, C.; Scozzafava, A. Struct. Bonding (Berlin) 1981, 48, 45-92. (e) Lindskog, S. In Zinc Enzymes; Spiro, T. G., Ed.; Wiley: New York, 1983; pp 77-122. (f) Sigel, H., Ed. Zinc and its Role in Biology and Nutrition; Metal Ions in Biological Systems, Vol. 15; Marcel Dekker: New York, 1983. (g) Botre, F.; Gros, G., Storey, B. T., Eds. Carbonic Anhydrase; VCH: New York, 1991. (h) Khalifah, R. G.; Silverman, D. N. In The Carbonic Anhydrases; Dodgson, S. J., Tashian, R. E.; Gros, G., Carter, N. D., Eds.; Plenum Publishing Corp.: New York, 1991; pp 49-70. (i) Lindskog, S. Adv. Inorg. Biochem. 1982, 4, 115-170. (j) Bertini, I., Luchinat, C., Maret, W., Zeppezauer, M., Eds. Zinc Enzymes; Progress in Inorganic Biochemistry and Biophysics, Vol. I; Birkhäuser: Boston, 1986. (10) Alsfasser, R.; Powell, A. K.; Trofimenko, S.; Vahrenkamp, H. Chem.
- Ber. 1993, 126, 685-694.
- (11) (a) Bertini, I.; Luchinat, C. Ann. N.Y. Acad. Sci. 1984, 429, 89-98. (b) Bertini, I.; Canti, G.; Luchinat, C.; Scozzafava, A. J. Chem. Soc., Dalton Trans. 1978, 1269–1273. (c) Moratal, J. M.; Martinez-Ferrer, M.-J.; Donaire, A.; Castells, J.; Salgado, J.; Jiménez, H. R. J. Chem. Soc., Dalton Trans. 1991, 3393-3399
- (12) (a) Lindskog, S.; Malmström, B. G. J. Biol. Chem. 1962, 237, 1129–1137.
 (b) Thorslund, A.; Lindskog, S. Eur. J. Biochem. 1967, 3, 117–123.
 (c) Williams, R. J. P. J. Mol. Catal. 1985, 30, 1-26.
- (13) (a) Coleman, J. E. Nature 1967, 214, 193-194. (b) Bauer, R.; Limkilde, P.; Johansen, J. T. Biochemistry 1976, 15, 334-342.
- (14) (a) Jonsson, N. B.-H.; Tibell, L. A. E.; Evelhoch, J. L.; Bell, S. J.; Sudmeier, J. L. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 3269-3272. (b) Armitage, I. H.; Pajer, R. T.; Schoot Uiterkamp, A. J. M.; Chlebowski, J. F; Coleman, J. E. J. Am. Chem. Soc. 1976, 98, 5710-5711. (c) J. Am. Coleman, J. E. J. Ann. Chem. Sol. 1976, 56, 5710 (1977)
 Armitage, I. H.; Schoot Uiterkamp, A. J. M.; Chlebowski, J. F.; Coleman, J. E. J. Magn. Reson. 1977, 29, 375–392. (d) Sudmeier, J. L.; Bell, S. J. J. Am. Chem. Soc. 1977, 99, 4499–4500. (e) Evelhoch, J. L.; Bocian, D. F.; Sudmeier, J. L. Biochemistry 1981, 20, 4951–4954.
- (15) For ¹¹³Cd NMR in other systems see: (a) Summers, M. Coord. Chem. Rev. 1988, 86, 43–134. (b) Rivera, E.; Kennedy, M. A.; Ellis, P. D. Adv. Magn. Reson. 1989, 13, 257–273. (c) Kennedy, M. A.; Ellis, P. D. J. Am. Chem. Soc. 1989, 111, 3195–3203. (d) Ellis, P. D. J. Blol. Chem. 1989, 264, 3108-3110. (e) Munakata, M.; Kitagawa, S.; Yagi, F. Inorg. Chem. **1986**, 25, 964–970.
- (16) It should be noted that activity of cadmium-substituted carbonic anhydrase may be enhanced at higher pH values (ca. pH 9). See ref 13

[‡] Present address: College of Education, Chemistry Department, Ain Shams University, Cairo, Egypt.

Abstract published in Advance ACS Abstracts, February 1, 1994. Trofimenko, S. Chem. Rev. 1993, 93, 943–980.

⁽²⁾ Gorrell, I. B.; Looney, A.; Parkin, G. J. Chem. Soc., Chem. Commun. 1990, 220-222.

⁽³⁾ Han, R.; Gorrell, I. B.; Looney, A. G.; Parkin, G. J. Chem. Soc., Chem. Commun. 1991, 717-719.

Tris(pyrazolyl)hydroborato Complexes of Cadmium

Figure 1. Structures of $\{\eta^3$ -HB(3,5-RR'pz)_3\}CdX complexes.

Figure 2. Molecular structure of $\{\eta^3-HB(3,5-Pr_2^ipz)_3\}CdI$.

hydroborato]cadmium complexes in order to provide information that may explain the origin of the difference in activity between the zinc and cadmium enzymes. In this paper, we describe the synthesis and structures of some alkyl, halide, and nitrate derivatives of cadmium that are supported by tris(pyrazolyl)hydroborato ligation. In particular, the coordination mode of the nitrate ligand in the complex { η^3 -HB(3-Bu¹-5-Mepz)_3}Cd(η^2 -O₂NO) will be of central importance.

Results

[Tris(pyrazolyl)hydroborato]cadmium complexes of the type { η^3 -HB(3,5-RR'pz)₃}CdX [3,5-RR'pz = 3-Bu¹pz, 3-Bu¹-5-Mepz, 3,5-Prⁱ₂pz; X = CH₃, I, NO₃], as shown in Figure 1, have been synthesized by the reaction between CdX₂ and either the potassium or thallium reagent M{HB(3,5-RR'pz)₃} (M = K, Tl), as illustrated by eqs 1-4. The molecular structures of each of the

$$CdI_2 + K{HB(3,5-Pr_2^ipz)_3}$$
 →
{ n^3 -HB(3,5-Pr_1^ipz)_3}CdI + KI (1)

 $CdI_{2} + Tl\{\eta^{3}-HB(3-Bu^{t}pz)_{3}\} \rightarrow$ $\{\eta^{3}-HB(3-Bu^{t}pz)_{3}\}CdI + TlI (2)$

Cd(NO₃)₂ + K{HB(3-Bu^t-5-Mepz)₃} →
{
$$\eta^{3}$$
-HB(3-Bu^t-5-Mepz)₃}Cd(η^{2} -O₂NO) + KNO₃ (3)

Cd(CH₃)₂ + Tl{
$$\eta^3$$
-HB(3-Bu^t-5-Mepz)₃} →
{ η^3 -HB(3-Bu^t-5-Mepz)₃}CdCH₃ + [TlCH₃]_{dec} (4)

derivatives { η^3 -HB(3,5-Pri₂pz)₃}CdI, { η^3 -HB(3-Bu^tpz)₃}CdI, { η^3 -HB(3-Bu^t-5-Mepz)₃}CdCH₃, and { η^3 -HB(3-Bu^t-5-Mepz)₃}Cd(η^2 -O₂NO) have been determined by X-ray diffraction as shown in Figures 2–5. Selected bond lengths and angles are presented in Tables 1–8, with atomic coordinates in Tables 9–12.

Discussion

Figure 3. Molecular structure of $\{\eta^3$ -HB(3-Bu^tpz)₃CdI.

Figure 4. Molecular structure of $\{\eta^3$ -HB(3-Bu^t-5-Mepz)_3\}CdCH₃.

Figure 5. Molecular structure of $\{\eta^3$ -HB(3-Bu^t-5-Mepz)_3\}Cd(η^2 -O₂NO).

Table 1. Selected Bond Lengths (Å) for $\{\eta^3-HB(3,5-Pr^i_2pz)_3\}CdI$

	<u> </u>	, (, ,,	21 7 5) = =
Cd–I	2.622(1)	Cd-N(12)	2.221(5)
Cd-N(22)	2.219(5)	Cd-N(22')	2.219(5)
N(11) - N(12)	1.361(8)	N(11)-B	1.556(10)
N(21) - N(22)	1.371(6)	N(21)-B	1.550(6)
N(21')-B	1.550(6)		

Table 2.	Selected	Bond	Angles	(deg)	for	${\eta^{3}-HB(3,5-Pr^{i}_{2}pz)_{3}}CdI$	
	and the second sec						5

I-Cd-N(12)	128.7(2)	I-Cd-N(22)	127.7(1)
I-Cd-N(22')	127.7(1)	N(12)-Cd-N(22)	85.8(2)
N(12)-Cd-N(22')	85.8(2)	N(22)-Cd-N(22')	86.3(2)
N(11)- B -N(21)	109.8(4)	N(11)- B -N(21')	109.8(4)
N(21)-B-N(21')	110.8(5)		

facile contamination with the six-coordinate sandwich complex $\{\eta^3-HB(3,5-Me_2p_2)_3\}_2Cd.^{17}$ However, by the use of more sterically-demanding tris(pyrazolyl)hydroborato ligands, we have found that cadmium complexes of the type $[\eta^3-HB(3,5-RR'p_2)_3]$ -CdX may be readily synthesized by metathesis reactions (eqs 1-4). The synthesis of the alkyl derivative $\{\eta^3-HB(3-Bu^t-5-Mep_2)_3\}$ CdCH₃ is based on the method that we had developed

Recent attempts to synthesize the complexes $\{\eta^3$ -HB(3,5-Me₂pz)₃CdX (X = Cl, I) have met with only limited success due to

(17) McWhinnie, W. R.; Monsef-Mirzal, Z.; Perry, M. C.; Shaikh, N.; Hamor, T. A. Polyhedron 1993, 12, 1193-1199.

Table 3.	Selected Bond	Lengths (Å	() for $\{\eta^3 - HB(3 - 1)\}$	Bu ¹ pz) ₃ }CdI

Cd-l	2.673(2)	Cd-N(12)	2.232(17)			
Cd-N(22)	2.255(12)	Cd-N(22')	2.255(12)			
N(11) - N(12)	1.377(26)	N(11)-B	1.520(42)			
N(21)~N(22)	1.400(18)	N(21)-B	1.555(25)			
B-N(21')	1.555(25)					
Table 4. Selected Bo	nd Angles (deg) for $\{\eta^3 - HB(3 - Bu^t)\}$	oz)3}CdI			
I-Cd-N(12)	124.2(4)	I-Cd-N(22)	127.4(3)			
N(12)-Cd-N(22)	88.8(4)	I-Cd-N(22')	127.4(3)			
N(12)-Cd-N(22')	88.8(4)	N(22)-Cd-N(22')	87.8(6)			
N(11)-B-N(21)	109.6(17)	N(11)-B-N(21')	109.6(17)			
N(21) - B - N(21')	108.7(24)					
Table 5. Selected Bond Lengths (Å) for $\{\eta^3-HB(3-Bu^4-5-Mepz)_3\}CdCH_3$						
CAC	2 074(19)	Cd_N(12)	2 311(7)			
N(11) = N(12)	1.364(13)	N(11)-R	1.573(11)			
$\Pi(11) = \Pi(12)$	1.504(15)	U (11)-D	1.575(11)			
Table 6.Selected Bo ${\eta^3}$ -HB(3-But-5-Mepz)	nd Angles (3}CdCH3	deg) for				
C-Cd-N(12)	128.6(2)	C-Cd-N(12')	128.6(2)			
N(12)-Cd-N(12')	85.2(4)	C-Cd-N(12")	128.6(2)			
N(12)-Cd-N(12'')	85.2(4)	N(12')-Cd-N(12'')	85.2(4)			
N(11)-B-N(11')	109.5(9)	N(11) - B - N(11')	109.5(9)			
N(11')-B-N(11')	109.5(9)					
Table 7. Selected Bo $\{\eta^3$ -HB(3-Bu ^t -5-Mepz)	nd Lengths $_{3}Cd(\eta^{2}-O_{2}N)$	(Å) for NO)				
Cd-O(1)	2.272(6)	Cd-O(2)	2.295(7)			
Cd-N(12)	2.245(3)	Cd-N(22)	2.250(4)			
Cd-N(32)	2.230(4)	O(1)-N	1.145(10)			
O(2)-N	1.160(7)	O(3)-N	1.207(6)			
N(11) - N(12)	1.372(5)	N(11)-B	1.541(6)			
N(21) - N(22)	1.363(5)	N(21)-B	1.552(6)			
N(21) - N(22)	1.387(6)	N(31)-B	1.554(7)			
Table 8.Selected Bo $\{\eta^3$ -HB(3-But-5-Mepz)	nd Angles (η_3 Cd(η^2 -O ₂ P	leg) for NO)				
O(1) Cd $O(2)$	48 1(3)	$O(1) = Cd_{-}N(12)$	107.0(2)			
O(1) = Cd = O(2) O(2) Cd = N(12)	1423(3)	O(1) - Cd - N(12)	107.0(2) 113.2(2)			
O(2) = Cd = N(12) O(2) = Cd = N(22)	172.3(3) 1221(2)	N(12) Cd N(22)	022(1)			
O(2) = Cd = N(22) O(1) Cd = N(22)	122.1(2) 151.6(2)	O(2) Cd N(32)	106.2(1)			
N(12) Cd N(32)	86 8(1)	N(2) - Cd - N(32)	100.3(2) 00.4(1)			
R(12) = Cd = R(32)	102.0(5)	(22) - Cd - H(32)	101.1(5)			
O(1) = N = O(2)	102.9(3)	O(1) = N = O(2)	125 0(5)			
O(1) - N - O(2)	107.0(0)	N(11) = N - O(3)	123.9(3)			
O(2) = IN = O(3) N(11) = N(21)	120.3(0)	N(11) - D - N(21) N(21) - D - N(21)	111.7(4) 110.5(4)			
N(11) - D - N(31)	111.5(4)	N(21) - D - N(31)	110.5(4)			
previously for the preparation of the related magnesium and zinc derivatives $\{m^2, HB(3, 5, RB', m_2)\}MB(M = Mg, Z_0)$, namely the						
reaction between M	R and the	thallium reagent TI	(n3-HB(3 5-			
DD/m7) 2.18 Thath	allium de-	vative Tile3 UD/2 5	$\mathbf{P}\mathbf{R}'\mathbf{n}_{\mathbf{n}}$			
KK pz/33.2.10 Ineth		valive 1187	$-\mathbf{R}\mathbf{R} \mathbf{p}\mathbf{z}\mathbf{j}\mathbf{z}\mathbf{j}\mathbf{s}\mathbf{l}\mathbf{s}$			
generally the reagen	t of choice	because the deposition	m of 11, due			
to decomposition of u	instable [T	IR], provides an effe	ctive driving			
force for the reaction	. ¹⁹ More re	cently, using a simila	r procedure,			

generally the reagent of choice because the deposition of Tl, due to decomposition of unstable [TlR], provides an effective driving force for the reaction.¹⁹ More recently, using a similar procedure, Reger synthesized an extensive series of cadmium alkyl derivatives of the less sterically-demanding tris(3,5-dimethylpyrazolyl)hydroborato ligand { η^3 -HB(3,5-Me₂pz)₃}CdR.²⁰

The molecular structures of the complexes $\{\eta^3$ -HB(3,5-Pri₂-pz)₃CdI, $\{\eta^3$ -HB(3-Bu^t-5-Mepz)₃CdCH₃, and $\{\eta^3$ -HB(3-Bu^t-5-Mepz)₃Cd(η^2 -O₂NO) are illustrated in Figures 2–5. Each of the complexes exhibit a similar coordination of the tris(pyrazolyl)hydroborato ligands to the cadmium center, as evidenced by the average Cd–N bond lengths and N–Cd–N bond angles: $\{\eta^3$ -HB(3,5-Pri₂pz)₃CdI [2.22 Å, 86.0°], $\{\eta^3$ -HB(3-Bu^tpz)₃CdI [2.25 Å, 88.5°], $\{\eta^3$ -HB(3-Bu^t-5-Mepz)₃CdCH₃ [2.31 Å, 85.2°], and $\{\eta^3$ -HB(3-Bu^t-5-Mepz)₃Cd(η^2 -O₂NO) [2.24 Å, 89.8°]. It is noteworthy that the Cd–N bond lengths in these

Table 9. Atom Coordinates (×10⁴) and Temperature Factors (Å² × 10³) for { η^3 -HB(3,5-Pri₂pz)₃}CdI

atom	x	у	Z	Uª
Cd	9531(1)	2500	8945(1)	57(1)
I	9557(1)	2500	6484(1)	113(1)
N(11)	11008(6)	2500	11824(5)	48(2)
N(12)	11324(6)	2500	10642(5)	54(2)
N(21)	8717(4)	1724(3)	11309(4)	52(1)
N(22)	8598(4)	1577(3)	10019(4)	56(2)
C(11)	12226(8)	2500	12751(7)	58(3)
C(12)	13308(9)	2500	12126(8)	72(3)
C(13)	12716(8)	2500	10819(7)	60(3)
C(14)	12280(8)	2500	14188(7)	70(3)
C(15)	13371(9)	2500	9672(9)	74(3)
C(16)	12915(16)	3246(7)	14792(8)	205(8)
C(17)	14113(24)	3098(11)	9567(16)	529(20)
C(21)	8108(6)	1106(4)	11816(5)	65(2)
C(22)	7626(7)	573(4)	10838(6)	83(3)
C(23)	7938(6)	872(4)	9737(5)	66(2)
C(24)	8054(7)	1060(4)	13230(6)	80(3)
C(25)	7668(8)	538(4)	8393(7)	91(3)
C(26)	6742(11)	1261(11)	13481(10)	219(9)
C(27)	8546(18)	304(11)	13803(10)	350(15)
C(28)	6323(11)	665(12)	7668(10)	260(10)
C(29)	8303(14)	-233(9)	8337(11)	230(9)
В	9463(8)	2500	11946(7)	45(3)

^a Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Table 10. Atom Coordinates (×10⁴) and Temperature Factors (Å² × 10³) for $\{\eta^3$ -HB(3-Bu⁴p2)₃\}CdI

atom	x	У	z	Ua
Cd	7958(1)	2958(1)	5383(2)	45(1)
I	9043(1)	4043(1)	4749(2)	69(1)
N(11)	6753(8)	1753(8)	4490(19)	49(5)
N(12)	7267(7)	2267(7)	3871(17)	43(5)
C(11)	6334(11)	1334(11)	3495(27)	52(7)
C(12)	6616(11)	1616(11)	2262(32)	64(9)
C(13)	7151(10)	2151(10)	2517(21)	42(6)
C(14)	7623(11)	2623(11)	1510(26)	58(7)
C(15)	7415(16)	2415(16)	108(27)	96(8)
C(16)	7462(11)	3513(10)	1778(22)	74(8)
N(21)	7446(8)	1390(7)	6644(13)	50(5)
N(22)	8141(7)	1835(7)	6565(12)	44(4)
C(21)	7583(11)	726(10)	7319(18)	59(6)
C(22)	8367(11)	718(11)	7680(17)	63(7)
C(23)	8693(10)	1431(11)	7238(16)	50(6)
C(24)	9534(9)	1703(12)	7330(19)	73(7)
C(25)	9912(14)	1779(15)	5976(20)	104(10
C(26)	9996 (15)	1088(18)	8227(30)	182(16
C(27)	9539(10)	2555(12)	7955(22)	95(9)
BÌ	6649(15)	1649(15)	6002(38)	58(9)

^{*a*} Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ij} tensor.

complexes are shorter than those in the six-coordinate sandwich complex $\{\eta^3$ -HB(3,5-Me₂pz)₃ $\}_2$ Cd [2.36(1) and 2.43(2) Å].^{17,21}

The Cd-I bond lengths in $\{\eta^3$ -HB(3,5-Prⁱ₂pz)₃CdI and $\{\eta^3$ - $HB(3-Bu^{t}pz)_{3}$ CdI are 2.622(1) and 2.673(2) Å, respectively, and are both shorter than the sum of covalent radii (2.81 Å).²² Since these complexes represent well-defined examples of fourcoordinate cadmium, these results may suggest that a more appropriate value for the covalent radius of cadmium in such complexes is ca. 1.32 Å [on the basis that $r_{cov}(I) = 1.33$ Å], rather than the literature value of 1.48 Å.²² Similarly, the Cd-CH₃ bond length of 2.07(2) Å in $\{\eta^3$ -HB(3-Bu^t-5-Mepz)_3\}CdCH₃ is also shorter than the sum of the covalent radii (2.25 Å)²² but is close to the value of 2.09 Å that is obtained by assuming a modified covalent radius of 1.32 Å for cadmium. Moreover, the Cd-CH₃ bond length of 2.07(2) Å is also close to the established range for other Cd-CH₃ bond lengths (2.09-2.11 Å). For reference, Cd-C bond lengths for some alkyl, aryl, and cyclopentadienyl derivatives are listed in Table 13. However, it should be noted that the thermal parameters of the carbon atom of the Cd-CH3 group are

⁽¹⁸⁾ Han, R.; Parkin, G. Organometallics 1991, 10, 1010-1020.

⁽¹⁹⁾ Gilman, H.; Jones, R. G. J. Am. Chem. Soc. 1946, 68, 517-520.

⁽²⁰⁾ Reger, D. L.; Mason, S. S. Organometallics 1993, 12, 2600-2603.

Table 11. Atom Coordinates $(\times 10^4)$ and Temperature Factors (Å² \times 10³) for { η^{3} -HB(3-Bu^t-5-Mepz)₃}CdCH₃

atom	x	у	Z	Ua
Cd	411(1)	411(1)	411(1)	47(1)
С	938(5)	938(5)	938(5)	105(7)
N(11)	-17(4)	-822(3)	-30(4)	35(3)
N(12)	422(5)	-600(3)	314(4)	37(3)
C(11)	-47(5)	-1412(4)	6(5)	38(4)
C(12)	394(5)	-1578(4)	383(6)	50(4)
C(13)	675(5)	-1059(5)	581(5)	48(4)
C(14)	-470(5)	-1785(5)	-311(6)	55(5)
C(15)	1187(5)	-981(6)	997(5)	51(4)
C(16)	957(8)	-681(9)	1554(6)	104(9)
C(17)	1441(8)	-1590(7)	1140(8)	101(8)
C(18)	1671(6)	-600(8)	713(7)	86(7)
B	-422(6)	-422(6)	-422(6)	36(3)

^a Equivalent isotropic U defined as one-third of the trace of the orthogonal U_{ij} tensor.

Table 12. Atom Coordinates $(\times 10^4)$ and Temperature Factors $(Å^2)$ × 10³) for { η^{3} -HB(3-Bu^t-5-Mepz)₃}Cd(η^{2} -O₂NO)

atom	x	У	Z	U^a
Cd	2353(1)	7168(1)	7183(1)	51(1)
O (1)	271(6)	6900(̀5)	7125(5)	236(5)
O(2)	1233(5)	6175(4)	6576(6)	223(5)
O(3)	-718(4)	5980(3)	6570(3)	103(2)
N	220(4)	6342(3)	6742(3)	75(2)
N(11)	3772(4)	8224(2)	8349(2)	54(1)
N(12)	2768(4)	7733(2)	8404(2)	56(1)
N(21)	3908(4)	8579(2)	6827(2)	53(1)
N(22)	2851(4)	8251(2)	6494(2)	54(1)
N(31)	5128(4)	7418(2)	7404(2)	55(1)
N(32)	4351(4)	6796(2)	7209(2)	59(1)
C(11)	3957(5)	8591(3)	9072(3)	66(2)
C(12)	3068(6)	8342(3)	9589(3)	74(2)
C(13)	2327(5)	7804(3)	9166(3)	60(2)
C(14)	4963(7)	9175(4)	9232(4)	106(3)
C(15)	1247(5)	7336(3)	9472(3)	68(2)
C(16)	1097(13)	7463(8)	10361(5)	226(7)
C(17)	82(8)	7549(9)	9042(7)	222(7)
C(18)	1492(8)	6499(5)	9339(6)	142(4)
C(21)	4220(5)	9210(3)	6378(3)	61(2)
C(22)	3366(5)	9281(3)	5751(3)	71(2)
C(23)	2517(5)	8673(3)	5829(3)	60(2)
C(24)	5337(6)	9700(4)	6577(4)	92(3)
C(25)	1380(6)	8491(3)	5295(3)	82(2)
C(26)	201(6)	8541(6)	5772(5)	150(4)
C(27)	1296(9)	9052(6)	4577(5)	201(6)
C(28)	1496(7)	7689(4)	4935(4)	106(3)
C(31)	6317(5)	7186(3)	7420(3)	70(2)
C(32)	6324(5)	6410(4)	7232(3)	77(2)
C(33)	5098(5)	6176(3)	7114(3)	68(2)
C(34)	7403(5)	7707(4)	7595(5)	100(3)
C(35)	4576(7)	5383(3)	6900(4)	95(3)
C(36)	3596(7)	5137(4)	7499(4)	116(3)
C(37)	4008(8)	5398(4)	6034(4)	133(4)
C(38)	5649(8)	4794(5)	6943(7)	196(6)
В	4609(5)	8239(4)	7594(3)	57(2)

^a Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ii} tensor.

not particularly well-behaved, so that the derived bond length should be regarded with a degree of caution.²³

The methyl derivative $\{\eta^3$ -HB(3-But-5-Mepz)_3\}CdCH₃ has also been studied by ¹H and ¹³C NMR spectroscopy. In particular, the ¹H NMR signal of the Cd-CH₃ group is characterized by the observation of both ¹¹¹Cd (${}^{2}J_{Cd-H} = 71$ Hz) and ¹¹³Cd (${}^{2}J_{Cd-H} =$ 74 Hz) satellites,²⁴ as shown in Figure 6. The ${}^{2}J_{Cd-H}$ coupling constants for $\{\eta^3$ -HB(3-Bu^t-5-Mepz)₃CdCH₃ are greater than those for the two-coordinate alkyls R₂Cd (50-53 Hz)²⁵ but less than those for tetrameric alkoxides [(RO)CdCH₃]₄ (80-90 Hz).^{26,27}

The coordination mode of the nitrate ligand in $\{\eta^3-HB(3-Bu^1-u^2)\}$ 5-Mepz)₃Cd(η^2 -O₂NO) is of particular interest to the present study. We have recently suggested that, among other factors,

Table 13. Some Cd-C Bond Lengths

compound	d(Cd-C), Å	ref
(CH ₃) ₂ Cd	2.112(4)	Ь
$[(CH_2 - CHMe_2Si)(Me_3Si)_2C]_2Cd$	2.172(3)	С
$[(CH_3)_2Cd(1,4-dioxane)]_n$	2.09(2)	d
(CH ₃) ₂ Cd(bipy)	2.17(3)	е
	2.15(2)	
$(Me_3SiCH_2)_2Cd(bipy)$	2.19(6)	f
	2.09(5)	
${\eta^3-HB(3-Bu^t-5-Mepz)_3}CdCH_3$	2.07(2)	this work
$[(NC_5H_4)SiMe_3)_2C]_2Cd$	2.27	8
$[2-(Me_2NCH_2)C_6H_4]_2Cd$	2.154(8)	ĥ
$[2,4,6-(CF_3)_3C_6H_2]_2Cd(MeCN)$	2.184(3)	i
	2.181(3)	
$Cp_2Cd(NC_5H_5)_2$	2.353(5)	j
	2.307(5)	-
$Cp^*Cd[\mu N(SiMe_3)_2]_2$	2.220(6)	k

^a Raman studies in gas phase. ^b Rao, K. S.; Stoicheff, B. P.; Turner, R. Can. J. Phys. 1960, 38, 1516. c Ayoko, G. A.; Buttrus, N. H.; Eaborn, C.; Hitchcock, P. B.; Smith, J. D. J. Organomet. Chem. 1987, 320, 137-143. ^d Almond, M. J.; Beer, M. P.; Drew, M. G. B.; Rice, D. A. J. Organomet. Chem. 1991, 421, 129-136. Almond, M. J.; Beer, M. P.; Drew, M. G. B.; Rice, D. A. Organometallics 1991, 10, 2072-2076. ^fBushnell, G. W.; Stobart, S. R. Can. J. Chem. 1980, 58, 574-578. 8 Henderson, M. J.; Papasergio, R. I.; Raston, C. L.; White, A. H.; Lappert, M. F. J. Chem. Soc., Chem. Commun. 1986, 672-674. h (i) Khan, O. F. Z.; Frigo, D. M.; O'Brien, P.; Howes, A.; Hursthouse, M. B. J. Organomet. Chem. 1987, 334, C27-C30. (ii) Atwood, J. L.; Berry, D. E.; Stobart, S. R.; Zaworotko, M. J. Inorg. Chem. 1983, 22, 3480-3482. 1 Brooker, S.; Bertel, N.; Stalke, D.; Noltemeyer, M.; Roesky, H. W.; Sheldrick, G. M.; Edelmann, F. T. Organometallics 1992, 11, 192-195. ¹(i) Smeets, W. J. J.; Spek, A. L.; Fischer, B.; van Mier, G. P. M.; Boersma, J. Acta Crystallogr. 1987, C43, 893-895. (ii) Fischer, B.; van Mier, G. P. M.; Boersma, J.; Smeets, W. J. J.; Spek, A. L. J. Organomet. Chem. 1987, 322, C37-C40. ^k Cummins, C. C.; Schrock, R. R.; Davis, W. M. Organometallics 1991, 10, 3781-3785.

the coordination mode (*i.e.* unidentate versus bidentate) exhibited in the bicarbonate intermediate of the carbonic anhydrase catalytic cycle may be an important factor in influencing the activity of metal-substituted enzymes.^{6,7} We also proposed that the changes in coordination mode of nitrate ligands in a series of structurally related metal complexes may provide an indication of the relative preferences for unidentate versus bidentate bicarbonate intermediates in the catalytic cycles of metal-substituted carbonic anhydrases.^{6,7} The basis of this suggestion is the observation that the variation of the coordination mode of the nitrate ligands in the complexes $\{\eta^3$ -HB(3-Bu^tpz)_3\}M(NO_3) (M = Co, Ni, Cu,

- $r_{cov}(Cd) = 1.48$ Å, $r_{cov}(Zn) = 1.31$ Å, $r_{cov}(C) = 0.77$ Å, $r_{cov}(I) = 1.33$ Å. See: Pauling, L. The Nature of the Chemical Bond, Cornell (22)University Press: Ithaca, NY, 1960.
- (23) The ill-behaved thermal parameter may be a consequence of (i) a poor absorption correction, (ii) cocrystallization with an unidentified isos-tructural impurity, or (iii) disorder of a different nature. See: (a) Parkin, G. Acc. Chem. Res. 1992, 25, 455-460. (b) Parkin, G. Chem. Rev. 1993, 93, 887-911.
- (24) ¹¹⁷Cd $(I = 1/2, 12.75\%, \gamma = -5.7046 \times 10^7 \text{ rad s}^{-1} \text{ T}^{-1})$ and ¹¹³Cd $(I = 1/2, 12.26\%, \gamma = -5.9609 \times 10^7 \text{ rad s}^{-1} \text{ T}^{-1})$. The ratio ²*I*¹¹Cd_{-H}/²*I*¹¹Scd_{-H} (0.96) is close to that predicted by the ratio $\gamma(1^{11}\text{Cd})/\gamma(1^{13}\text{Cd}) = 0.957$. (25) Turner, C. J.; White, R. F. M. J. Magn. Reson. **1977**, 26, 1–5. (26) Kennedy, J. D.; McFarlane, W. J. Chem. Soc., Perkin Trans. 2, **1977**, 100 (1977).
- 1187-1191. (27) It has been suggested that changes in J_{Cd-H} correlate with effective nuclear charge at cadmium. See ref 26 and: Kennedy, J. D.; McFarlane, W. J. Chem. Soc., Dalton Trans. 1976, 1219-1223.

⁽²¹⁾ Some other Cd-N bond lengths: $(1-Me-imid)_2Cd(SR)_2$ (R = 2,4,6- $Pr_{3}C_{6}H_2$), 2.28 (1) Å;^{21a} C₂H₄[MeNCH₂(3,5-Me₂pz)]₂Cd(2, 2.431(3) and 2.478(3) Å;^{21b} { η^{2} -O[CH₂CH₂(3,5-Me₂pz)]₂Cd(η^{2} -NO₃)₂, 2.26 Å (average);^{21c} { η^{3} -HN[CH₂CH₂(3,5-Me₂pz)]₂}Cd(η^{2} -NO₃)₂, 2.31 Å (average);^{21c} Cd₃(bddo)₂(NCS)₄, 2.32 Å (average);^{21d} [Cd(1-Me-imid)₆]²⁺, 2.35 Å (average);^{21e} (a) Corwin, D. T., Jr; Gruff, E. S; Kook S. A. Cham. Soc. Cham. Comput. 1987. 966. 967. (b) Page Koch, S. A. J. Chem. Soc., Chem. Commun. 1987, 966-967. (b) Paap, F.; Erdonmez, A.; Driessen, W. L.; Reedijk, J. Acta Crystallogr. 1986, C42, 783-785. (c) Griffith, E. A. H.; Charles, N. G.; Lewinski, K.; Amma, E. L.; Rodesiler, P. Inorg. Chem. 1987, 26, 3983-3989. (d) Haanstra, W. G.; Driessen, W. L.; Reedijk, J.; Turpeinen, U.; Hāmäläinen, R. J. Chem. Soc., Dalton Trans. 1989, 2309-2314. (e) Rodesiler, P. F.; Charles, N. G.; Griffith, E. A. H.; Lewinski, K.; Amma, E. L. Acta Crystallogr. 1986, C42, 396-399.

Figure 6. ¹H NMR signal of the Cd–CH₃ group in $\{\eta^3$ -HB(3-Bu^tpz)₃-CdCH₃.

Zn) correlates with the activity of the metal-substituted carbonic anhydrases. Thus, the nitrate ligand coordination mode in $\{\eta^3$ -HB(3-Bu^tpz)₃}M(NO₃) (M = Co, Ni, Cu, Zn) varies from unidentate for Zn to symmetric bidentate for Ni and Cu, with the cobalt derivative exhibiting an asymmetric coordination mode.²⁸ Significantly, the activity of the metal-substituted enzymes also decreases across the series Zn > Co \gg Ni and Cu,¹¹⁻¹³ a sequence that therefore correlates with the coordination mode of the nitrate ligands in the model complexes { η^3 -HB(3-Bu^tpz)₃}M(NO₃) (M = Co, Ni, Cu, Zn).²⁹ Indeed, subsequent to our original report on the model complex { η^3 -HB(3-Bu^tpz)₃}-Zn(η^1 -ONO₂),³⁰ the X-ray structure of the nitrate derivative of human carbonic anhydrase II has shown that the nitrate ligand is coordinated to the zinc center *via* only one of its oxygen atoms.³¹

Cadmium-substituted carbonic anhydrase is less active than the zinc enzyme.^{13,16} Many factors, such as the higher pK_a of the coordinated water, ^{13,16,32} may be responsible for the lower activity of cadmium-substituted carbonic anhydrase. Nevertheless, it was of interest to determine the coordination mode of the nitrate ligand in a related cadmium complex in order to examine the previously observed correlation between enzyme activity and the ease with a metal center may stabilize bidentate coordination,^{6,7,33,34}

As illustrated in Figure 5, the cadmium derivative { η^3 -HB(3-Bu^t-5-Mepz)_3}Cd(η^2 -O₂NO) exhibits bidentate coordination of the nitrate ligand, with very similar Cd–O bond lengths of 2.272-(6) and 2.295(7) Å.³⁵ The observation of an almost symmetric bidentate coordination mode in { η^3 -HB(3-Bu^t-5-Mepz)_3}Cd(η^2 -O₂NO) contrasts with the significantly different Zn–O interactions [1.978(3) and 2.581(3) Å] in the related zinc complex

- (28) For further information on nitrate coordination modes see: (a) Addison, C. C.; Logan, N.; Wallwork, S. C.; Garner, C. D. Q. Rev., Chem. Soc. 1971, 25, 289-322. (b) Kleywegt, G. J.; Wiesmeijer, W. G. R.; Van Driel, G. J.; Driessen, W. L.; Reedijk, J.; Noordik, J. H. J. Chem. Soc., Dalton Trans. 1985, 2177-2184. (c) Suslick, K. S.; Watson, R. A. Inorg. Chem. 1991, 30, 912-919.
- (29) Furthermore, Kitajima recently reported similar structural changes for a series of binuclear bridging carbonate complexes, [η³·HB(3,5·Pr¹₂-pz)₃]M]₂(μ-CO₃) (M = Fe, Co, Ni, Cu, Zn): Kitajima, N.; Hikichi, S.; Tanaka, M.; Moro-oka, Y. J. Am. Chem. Soc. 1993, 115, 5496-5508.
 (30) Han, R.; Parkin, G. J. Am. Chem. Soc. 1991, 113, 9707-9708.
- (31) The Zn-O distance is 2.8 Å, indicating a relatively weak association. Moreover, the nitrate ligand does not displace the coordinated water from the zinc center. See: Mangani, S.; Håkansson, K. Eur. J. Biochem.
- 1992, 210, 867-871. (32) Garmer, D. R.; Krauss, M. J. Am. Chem. Soc. 1992, 114, 6487-6493.
- (33) We emphasize that it is the structural *changes* of nitrate coordination mode that provide an indication of the *changes* that may be expected for the corresponding bicarbonate complexes. Thus, this argument does not require that a nitrate coordination mode must be identical to that of the corresponding bicarbonate complex.
- (34) We also note that Mn(II)-substituted carbonic anhydrase, which is less active than the zinc enzyme, has also been proposed to exhibit bidentate bicarbonate coordination. See: (a) Led, J. J.; Neesgaard, E. Biochemistry 1987, 26, 183-192. (b) Led, J. J.; Neesgaard, E.; Johansen, J. T. FEBS Lett. 1982, 147, 74-80.

 ${\eta^3-HB(3-Bu^tpz)_3}Zn(\eta^1-ONO_2)$. The ability of cadmium to stabilize the bidentate coordination mode is presumably a reflection of larger size of Cd compared to its lighter congener Zn.^{36,37} Thus, in line with the reduced activity of cadmiumsubstituted carbonic anhydrase, it is significant that the cadmium derivative $\{\eta^3$ -HB(3-Bu^t-5-Mepz)_3\}Cd(η^2 -O₂NO) also exhibits bidentate coordination of the nitrate ligand. As such, this observation thereby provides further support for the proposal that it is important to consider the nature of the bicarbonate intermediate (i.e. unidentate versus bidentate) when one evaluates the origin of the different activities of metal-substituted carbonic anhydrases. However, it is not intended to suggest that this factor alone is responsible for influencing the activity of metal-substituted carbonic anhydrases, and other factors, such as the coordination environment and the pK_a of the coordinated water, must naturally also be considered.

Experimental Section

General Considerations. All manipulations were performed using a combination of glovebox, high-vacuum, and Schlenk techniques.³⁸ Solvents were purified and degassed by standard procedures. ¹H and ¹³C NMR spectra were recorded on Varian VXR 200, 300, and 400 spectrometers. IR spectra were recorded as KBr pellets or Nujol mulls between KBr disks on a Perkin-Elmer 1420 spectrophotometer and are reported in cm⁻¹. Mass spectra were obtained on a Nermag R10-10 mass spectrometer using chemical ionization (NH₃ or CH₄) techniques. Elemental analyzer. K{HB(3-Bu^tp_2)₃},³⁹ Tl{ η^3 -HB(3-Bu^tp_2)₃},⁴⁰ K{HB(3-Bu^tp_2)₃},⁴⁰ K{HB(3-Bu^tp_2)₃},⁴⁰ and Cd(CH₃)₂⁴² were prepared by literature methods.

Synthesis of { η^3 -HB(3,5-Pr¹₂pz)₃}CdI. A solution of K{HB(3,5-Pr¹₂-pz)₃} (0.50 g, 0.99 mmol) in C₆H₆ (20 mL) was added dropwise to a suspension of CdI₂ (0.44 g, 1.18 mmol) in C₆H₆ (20 mL), resulting in the immediate formation of a yellow precipitate. The mixture was stirred overnight at room temperature and filtered. The filtrate was concentrated and placed at 0 °C, giving a crop of colorless crystals. The crystals of { η^3 -HB(3,5-Pr¹₂pz)₃}CdI were isolated by filtration and dried *in vacuo* (0.38 g, 54%). Anal. Calcd for { η^3 -HB(3,5-Pr¹₂pz)₃CdI: C, 46.0; H, 6.6; N, 11.9. Found: C, 45.7; H, 6.1; N 11.9. ¹H NMR (C₆D₆): δ 1.12 [18H, d, ³J_{H-H} = 7, η^3 -HB{C₃N₂H(CHMe₂)₂]₃], 3.45 [3H, spt, ³J_{H-H} = 7, η^3 -HB{C₃N₂H(CHMe₂)₂]₃], 5.83 [3H, s, η^3 -HB{C₃N₂H(CHMe₂)₂]₃]. ¹³C NMR (C₆D₆): δ 23.5 [6C, q, ¹J_{C-H} = 126, η^3 -HB{C₃N₂H(CHMe₂)₂]₃], 23.6 [6C, q, ¹J_{C-H} = 127, η^3 -

- (35) For some other examples of cadmium nitrate derivatives, see ref 28b and: (a) Cameron, A. F.; Taylor, D. W.; Nuttall, R. H. J. Chem. Soc., Dalton Trans. 1972, 1608-1611. (b) Griffith, E. A. H.; Charles, N. G.; Rodesiler, P. F.; Amma, E. L. Polyhedron 1985, 4, 615-620. (c) Banerjee, A.; Brown, C. J.; Jain, P. C.; Gautam, P. Acta Crystallogr. 1984, C40, 1161-1164. (d) Griffith, E. A. H.; Charles, N. G.; Rodesiler, P. F.; Amma, E. L. Acta Crystallogr. 1983, C39, 331-333. (e) Rodesiler, P. F.; Turner, R. W.; Charles, N. G.; Griffith, E. A. H.; Amma, E. L. Inorg. Chem. 1984, 23, 999-1004.
- (36) For some other examples of differences in coordination numbers between zinc and cadmium derivatives see: (a) Reddy, H. K.; Zhang, C.; Schlemper, E. O.; Schrauzer, G. N. *Inorg. Chem.* 1992, 31, 1673-1677.
 (b) Kimura, E.; Koike, T.; Shiota, T.; Iitaka, Y. *Inorg. Chim.* 1990, 29, 4621-4629.
- (37) An interesting example where a cadmium derivative exhibits unidentate nitrate coordination when the zinc derivative exhibits bidentate coordination is provided by the complexes Cd(OenNdienH₄)(η¹-NO₃)₂ and Zn(OenNdienH₄)(η¹-NO₃)(η²-NO₃). However, in this case the macrocyclic OenNdienH₄ ligand also adopts different coordination modes. See: Adam, K. R.; Dancey, K. P.; Leong, A. J.; Lindoy, L. F.; McCool, B. J.; McPartlin, M.; Tasker, P. A. J. Am. Chem. Soc. 1988, 110, 8471-8477.
- (38) (a) McNally, J. P.; Leong, V. S.; Cooper, N. J. ACS Symp. Ser. 1987, 357, 6-23. (b) Burger, B. J.; Bercaw, J. E. ACS Symp. Ser. 1987, 357, 79-97.
- (39) Trofimenko, S.; Calabrese, J. C.; Thompson, J. S. Inorg. Chem. 1987, 26, 1507–1514.
- (40) Trofimenko, S.; Calabrese, J. C.; Kochi, J. K.; Wolowiec, S.; Hulsbergen, F. B.; Reedijk, J. Inorg. Chem. 1992, 31, 3943-3950.
- (41) (a) Kitajima, N.; Fujisawa, K.; Fujimoto, C.; Moro-oka, Y. Chem. Lett. 1989, 421-424. (b) Kitajima, N.; Fujisawa, K.; Fujimoto, C.; Moro-oka, S.; Hashimoto, T.; Toriumi, K.; Tatsumi, K.; Nakamura, A. J. Am. Chem. Soc. 1992, 114, 1277-1291.
- (42) Jeffrey, E. A.; Mole, T. Aust. J. Chem. 1968, 21, 1187-1196.

INDICIAL OFFICIAL AND INCOMPLETE DALL	Table 14	4. Cry	ystal and	I Intensit	y Collection	Data
---------------------------------------	----------	--------	-----------	------------	--------------	------

	L ^I CdI ^a	L ¹¹ CdI ^a	L ^{III} CdCH ₃ ^a	L ^{III} Cd(O ₂ NO) ^a
formula	C27H46N6BCdI	C ₂₁ H ₃₄ N ₆ BICd	C ₂₅ H ₄₃ N ₆ BCd	C24H40N7BO3Cd
fw	704.8	620.7	550.9	597.9
lattice	monoclinic	tetragonal	cubic	monoclinic
cell constants		•		
a, Å	9.840(2)	16.938(2)	22.747(2)	10.690(1)
b, Å	16.449(9)	16.938(2)	22.747(2)	17.233(3)
c, Å	10.633(2)	9.915(2)	22.747(2)	16.272(2)
α , deg	90.0	90.0	90.0	90.0
β , deg	103.04(2)	90.0	90.0	91.70(1)
γ , deg	90.0	90.0	90.0	90.0
V, Å ³	1677(1)	2845(1)	11 770(2)	2996(1)
Ζ	2	4	16	4
radiation (λ, Å)	Μο Κα (0.710 73)	Μο Κα (0.710 73)	Μο Κα (0.710 73)	Mo Kα (0.710 73)
space group	$P2_1/m$ (No. 11)	$P\bar{4}2_1m$ (No. 113)	I43d (No. 220)	$P2_1/n$ (No. 14)
ρ (calcd), g cm ⁻³	1.40	1.45	1.24	1.33
μ (Mo K α), cm ⁻¹	16.0	18.8	7.6	7.6
2θ range, deg.	3-50	3-50	3-50	3-50
no. of data $[F > 6\sigma(F)]$	2331	934	577	3583
no. of parameters	182	152	103	330
goodness of fit	1.772	1.491	1.162	1.239
Ř	0.0460	0.0522	0.0433	0.0395
R_{w}^{b}	0.0689	0.0623	0.0504	0.0525

^a L^I = { η^3 -HB(3,5-Prⁱ₂pz)₃}, L^{II} = { η^3 -HB(3-Bu^tpz)₃}, L^{III} = { η^3 -HB(3-Bu^t-5-Mepz)₃}. ^b Weighting scheme: $w = [\sigma^2(F) + gF^2]^{-1}$.

HB{C₃N₂H(CHMe₂)₂}₃], 26.7 [3C, d, ${}^{1}J_{C-H} = 127$, η^{3} -HB{C₃N₂H-(CHMe₂)₂}₃], 28.4 [3C, d, ${}^{1}J_{C-H} = 127$, η^{3} -HB{C₃N₂H(CHMe₂)₂}₃], 98.1 [3C, d, ${}^{1}J_{C-H} = 172$, η^{3} -HB{C₃N₂H(CHMe₂)₂}₃], 157.1 [3C, s, η^{3} -HB{C₃N₂H(CHMe₂)₂}₃], 157.1 [3C, s, η^{3} -HB{C₃N₂H(CHMe₂)₂}₃], 161.0 [3C, s, η^{3} -HB{C₃N₂H(CHMe₂)₂}₃]. IR data: 2552 (ν_{B-H}).

Synthesis of $\{\eta^3$ -HB(3-Bu^tpz)_3\}CdI. A suspension of Tl $\{\eta^3$ -HB(3-Bu^tpz)3} (1.50 g, 2.6 mmol) in THF (ca. 30 mL) was added to a suspension of CdI₂ (1.00 g, 2.7 mmol) in THF (ca. 20 mL). A yellow precipitate of TII was immediately deposited. The mixture was stirred at room temperature for 30 min and filtered. The filtrate was concentrated and placed at 0 °C, giving colorless crystals of $\{\eta^3$ -HB(3-Bu^tpz)₃}CdI, which were isolated by filtration and dried in vacuo (1.0 g, 62%). Anal. Calcd for ${\eta^{3}-HB(3-Bu^{t}pz)_{3}}CdI: C, 40.6; H, 5.5; N, 13.5.$ Found: C, 39.3; H, 5.1; N, 11.9 (nitrogen analysis was consistently low). IR data: 2946 (ν_{B-H}) . ¹H NMR (C₆D₆): δ 1.44 [27H, s, { η^{3} -HB{C₃N₂H₂C(CH₃)₃}], 5.83 [3H, d, ${}^{3}J_{H-H} = 2.6$, η^{3} -HB{C₃N₂H₂C(CH₃)₃], 7.36 [3H, d, ${}^{3}J_{H-H}$ = 2.6, η^3 -HB{C₃N₂H₂C(CH₃)₃]. ¹³C NMR (C₆D₆): δ 31.5 [q, ¹J_{C-H} = 126, η^3 -HB{C₃N₂H₂C(CH₃)₃]₃], 32.2 [s, η^3 -HB{C₃N₂H₂C(CH₃)₃]₃], 102.3 [d, ${}^{1}J_{C-H} = 176$; d, ${}^{2}J_{C-H} = 8$; η^{3} -HB{ $C_{3}N_{2}H_{2}C(CH_{3})_{3}$], 132.0 $[d, {}^{1}J_{C-H} = 185; d, {}^{2}J_{C-H} = 5; \eta^{3}-HB\{C_{3}N_{2}H_{2}C(CH_{3})_{3}\}_{3}], 165.3 [s, \eta^{3}-HB\{C_{3}N_{2}H_{2}C(CH_{3})_{3}\}_{3}]$ $HB\{C_3N_2H_2C(CH_3)_3\}_3].$

Synthesis of $\{\eta^3$ -HB(3-Bu^t-5-Mepz)_3\}CdCH₃. A solution of Cd(CH₃)₂ (excess) in toluene was added to a solution of $Tl{\eta^3-HB(3-Bu^t-5-Mepz)_3}$ (0.50 g, 0.8 mmol) in Et₂O (30 mL), resulting in the formation of a black deposit. The mixture was stirred for 1 h at room temperature and filtered. The solvent was removed from the filtrate under reduced pressure and cooled to 0 °C, giving a crop of colorless crystals. The crystals of $\{\eta^3$ -HB(3-But-5-Mepz)₃{CdCH₃ were isolated by filtration and dried in vacuo (0.24 g, 55%). Anal. Calcd for { η^3 -HB(3-Bu^t-5-Mepz)_3CdCH₃: C, 54.5; H, 7.9; N, 15.3. Found: C, 53.9; H, 7.4; N, 14.6. ¹H NMR (C₆D₆): δ 0.56 [3H, s, Cd–CH₃, ²J_{Cd–H} = 71 and 74], 1.40 [27H, s, η^{3} -HB{C₃N₂H(CH₃)CMe₃]₃], 2.20 [9H, s, η^{3} -HB{C₃N₂H(CH₃)CMe₃]₃], 5.72 [3H, s, η^3 -HB{C₃N₂H(CH₃)CMe₃]. ¹³C NMR (C₆D₆): δ -6.1 $[q, {}^{1}J_{C-H} = 126, Cd-CH_{3}], 13.1 [q, {}^{1}J_{C-H} = 128, \eta^{3}-HB\{C_{2}N_{2}CH(CH_{3})-$ CMe₃]₃], 30.8 [q, ${}^{1}J_{C-H} = 127$, η^{3} -HB{C₂N₂CH(CH₃)CMe₃]₃], 31.7 [s, η^{3} -HB{C₂N₂CH(CH₃)CMe₃}, 102.8 [d, ${}^{1}J_{C-H} = 172, \eta^{3}$ -HB{C₂N₂CH- $(CH_3)CMe_3$], 144.1 and 162.4 [s, η^3 -HB{ $C_2N_2CH(CH_3)CMe_3$]]. IR data: 2565 (v_{B-H}).

Synthesis of { η^{3} -HB(3-Bu^t-5-Mepz)_3}Cd(η^{2} -O₂NO). A fine suspension of K{HB(3-Bu^t-5-Mepz)_3} (0.75 g, 1.62 mmol) in THF (20 mL) was added to a solution of Cd(NO₃)₂·4(H₂O) (0.68 g, 2.2 mmol) in THF (10 mL). The mixture was stirred overnight at room temperature, giving a white precipitate, which was removed by filtration. The filtrate was concentrated under reduced pressure and placed at 0 °C, giving { η^{3} -HB(3-Bu^t-5-Mepz)_3}Cd(η^{2} -O₂NO) as colorless crystals. { η^{3} -HB(3-Bu^t-5-Mepz)_3}Cd(η^{2} -O₂NO) was isolated by filtration and dried *in vacuo* (0.5 g, 52%). Anal. Calcd for { η^{3} -HB(3-Bu^t-5-Mepz)_3}Cd(η^{2} -O₂NO): C, 48.2; H, 6.7; N, 16.4. Found: C, 48.2; H, 6.5; N, 15.7. ¹H NMR (C₆D₆): δ 1.32 [27H, s, η^{3} -HB{C₃N₂H(CH₃)CMe₃}], 2.08 [9H, s, η^{3} - HB{C₃N₂H(CH₃)CMe₃]₃], 5.64 [3H, s, η^3 -HB{C₃N₂H(CH₃)CMe₃]₃]. ¹³C NMR (C₆D₆): δ 13.1 [q, ¹J_{C-H} = 128, η^3 -HB{C₂N₂CH(CH₃)CMe₃]₃], 30.3 [q, ¹J_{C-H} = 128, η^3 -HB{C₂N₂CH(CH₃)CMe₃]₃], 31.5 [s, η^3 -HB{C₂N₂CH(CH₃)CMe₃]₃], 103.5 [d, ¹J_{C-H} = 174, η^3 -HB{C₂N₂CH(CH₃)CMe₃]₃], 103.5 [d, ¹J_{C-H} = 174, η^3 -HB{C₂N₂CH(CH₃)CMe₃]₃], 145.7 and 163.7 [s, η^3 -HB{C₂N₂CH(CH₃)CMe₃]₃]. IR data: 2574 (ν_{B-H}).

X-ray Structure Determination of $\{\eta^3$ -HB(3,5-Prⁱ₂pz)₃CdI. Crystal data and data collection and refinement parameters for $\{\eta^3$ -HB(3,5-Prⁱ₂pz)₃CdI are summarized in Table 14. A single crystal of $\{\eta^3$ -HB(3,5-Prⁱ₂pz)₃CdI was mounted in a glass capillary that was then placed on a Nicolet R3m diffractometer. The unit cell was determined by the automatic indexing of 25 centered reflections and confirmed by examination of the axial photographs. Intensity data were collected using graphite-monochromated Mo K α X-radiation ($\lambda = 0.71073$ Å). Check relections were measured every 100 reflections, and the data were scaled accordingly and corrected for Lorentz, polarization, and absorption effects (based on ψ scans). The structure was solved using direct methods and standard difference map techniques on a Data General NOVA 4 computer using SHELXTL.43 Systematic absences were consistent with the space groups $P2_1/m$ (No. 11) and $P2_1$ (No. 4), but the structure was successfully solved with the choice $P2_1/m$ (No. 11). Most of the hydrogen atoms were located in the difference map after all the non-hydrogen atoms were located and refined anisotropically, but hydrogens on carbon were allowed to refine in calculated positions ($d_{C-H} = 0.96 \text{ Å}$; $U_{iso}(H) = 1.2U_{iso}(C)$). Block-diagonal least-squares refinement converged to R = 0.0460 (R_w = 0.0689). Atomic coordinates and thermal parameters for non-hydrogen atoms are listed in Table 9, and selected bond distances and angles are listed in Tables 1 and 2.

X-ray Structure Determination of {73-HB(3-Butpz)3}CdI. Crystal data and data collection and refinement parameters are summarized in Table 14, and the general procedure is as described for $\{\eta^3-HB(3,5-Pr_2^ipz)_3\}$ -CdI. Check reflections were measured every 100 reflections, and the data were scaled accordingly and corrected for Lorentz, polarization, and absorption effects (based on ψ scans). Systematic absences were consistent with the space groups $P\overline{4}2_1m$ (No. 113) and $P42_12$ (No. 90), but the structure was successfully solved with the choice $P\bar{4}2_1m$ (No. 113). Most of the hydrogen atoms were located in the difference map after all the non-hydrogen atoms were located and refined anisotropically, but hydrogens on carbon were allowed to refine in calculated positions $(d_{C-H} = 0.96 \text{ Å}; U_{iso}(H) = 1.2 U_{iso}(C))$. Block-diagonal least-squares refinement converged to R = 0.0522 ($R_w = 0.0623$). Inversion of configuration indicated the correct choice of enantiomorph. Atomic coordinates and thermal parameters for non-hydrogen atoms are listed in Table 10, and selected bond distances and angles are listed in Tables 3 and 4.

⁽⁴³⁾ Sheldrick, G. M. SHELXTL, An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data; University of Göttingen: Göttingen, Germany, 1981.

X-ray Structure Determination of $\{\eta^3$ -HB(3-Bu^t-5-Mepz)_3\}CdCH₃. Crystal data and data collection and refinement parameters are summarized in Table 14, and the general procedure is as described for $\{\eta^3$ -HB(3,5-Prⁱ_2pz)_3\}CdI. Check reflections were measured every 100 reflections, and the data were scaled accordingly and corrected for Lorentz, polarization, and absorption effects (based on ψ scans). Systematic absences were consistent uniquely with the space group $I\overline{4}3d$ (No. 220). Most of the hydrogen atoms were located in the difference map after all the non-hydrogen atoms were located and refined anisotropically, but hydrogens on carbon were allowed to refine in calculated positions ($d_{C-H} = 0.96 \text{ Å}; U_{iso}(H) = 1.2U_{iso}(C)$). Block-diagonal least-squares refinement converged to R = 0.0433 ($R_w = 0.0504$). Inversion of configuration indicated the correct choice of enantiomorph. Atomic coordinates and thermal parameters for non-hydrogen atoms are listed in Table 11, and selected bond distances and angles are listed in Tables 5 and 6.

X-ray Structure Determination of $\{\eta^3$ -HB(3-Bu^t-5-Mepz)_3\}Cd(η^2 -O₂-NO). Crystal data and data collection and refinement parameters are summarized in Table 14, and the general procedure is as described for $\{\eta^3$ -HB(3,5-Prⁱ_2pZ)_3\}CdI. Check reflections were measured every 100 reflections, and the data were scaled accordingly and corrected for Lorentz, polarization, and absorption effects (based on ψ scans). Systematic absences were consistent uniquely with the space group $P2_1/n$ (No. 14). Most of the hydrogen atoms were located in the difference map after all the non-hydrogen atoms were located and refined anisotropically, but hydrogens on carbon were allowed to refine in calculated positions ($d_{C-H} = 0.96 \text{ Å}$; $U_{iso}(H) = 1.2U_{iso}(C)$). Block-diagonal least-squares refinement converged to R = 0.0395 ($R_w = 0.0325$). Atomic coordinates and thermal parameters for non-hydrogen atoms are listed in Table 12, and selected bond distances and angles are listed in Tables 7 and 8.

Conclusion

In summary, a series of [tris(pyrazolyl)hydroborato]cadmium complexes of the type { η^3 -HB(3,5-RR'pz)₃CdX [3,5-RR'pz =

3-Bu¹pz, 3-Bu¹-5-Mepz, 3,5-Pr¹₂pz; $X = CH_3$, I, NO₃] have been synthesized by the reaction between CdX₂ and either the potassium or thallium reagent M{HB(3,5-RR'pz)₃} (M = K, Tl). The complex { η^3 -HB(3-Bu¹-5-Mepz)₃}Cd(η^2 -O₂NO) exhibits bidentate coordination of the nitrate ligand, in contrast to the unidentate coordination mode that is observed in the related zinc derivative { η^3 -HB(3-Bu¹pz)₃}Zn(η^1 -ONO₂). In view of the lower activity of cadmium-substituted carbonic anhydrase compared with the zinc enzyme, this result supports the notion that facile access to a unidentate bicarbonate intermediate may be a critical requirement for carbonic anhydrase activity.

Note Added in Proof. Since submission of this manuscript, two other papers concerned with tris(pyrazolyl)hydroborato complexes of cadmium have appeared.⁴⁴

Acknowledgment is made to the National Institutes of Health (Grant GM46502) for partial support of this research. G.P. is the recipient of an A. P. Sloan Research Fellowship (1991–1993), a Camile and Henry Dreyfus Teacher-Scholar Award (1991– 1996), and a Presidential Faculty Fellowship Award (1992–1997). We thank the reviewers for helpful comments.

Supplementary Material Available: Tables of complete crystal and intensity collection data, hydrogen atomic coordinates and temperature factors, bond distances and angles, and anisotropic displacement parameters for $\{\eta^3$ -HB(3,5-Pri₂pz)₃]CdI, $\{\eta^3$ -HB(3-Bu^tpz)₃]CdI, $\{\eta^3$ -HB-(3-Bu^t-5-Mepz)_3]CdCH₃, and $\{\eta^3$ -HB(3-Bu^t-5-Mepz)_3]Cd(η^2 -O₂NO) (21 pages). Ordering information is given on any current masthead page.

 ^{(44) (}a) Reger, D. L.; Mason, S. S.; Takats, J.; Zhang, X.-W.; Rheingold, A. L.; Haggerty, B. S. *Inorg. Chem.* 1993, 32, 4345–4348. (b) Reger, D. L.; Mason, S. S.; Rheingold, A.L.; Ostrander, R. L. *Inorg. Chem.* 1993, 32, 5216–5222.