Tris(pyrazoly1) hydroborato Complexes of Cadmium: A Bidentate Nitrate Derivative and Its Relevance to Carbonic Anhydrase Activity

Adrian Looney, Akila Saleh,t Yonghui Zhang, and Gerard Parkin'

Department **of** Chemistry, Columbia University, New York, New York 10027

Received *August* 18, *1993'*

The synthesis and structures of a series of $[\text{tris}(pyrazolyl)hydroboratolcedmium complexes, \{m^3-HB(3,5-Pr^i₂)\}$ CdI, $\{\eta^3-HB(3-Bu^tpz)_3\}$ CdI, $\{\eta^3-HB(3-Bu^t-5-Mepz)_3\}$ CdCH₃, and $\{\eta^3-HB(3-Bu^t-5-Mepz)_3\}$ Cd(η^2-O_2NO), are reported. The complex $\{\eta^3-HB(3-Bu^t-5-Mepz)\}Cd(\eta^2-O_2NO)$ exhibits bidentate coordination of the nitrate ligand [2.272(6) and 2.295(7) **A],** in contrast to the unidentate coordination mode that is observed in the related zinc derivative $[\eta^3-HB(3-Bu^tpz)_3\}Zn(\eta^1-ONO_2)$. Cadmium-substituted carbonic anhydrase is less active than the zinc enzyme, and although many factors, such as the higher pK_a of the coordinated water, may be responsible for the lower activity, the observation of bidentate coordination in $\{\eta^3-HB(3-Bu^t-5-Mepz)\}Cd(\eta^2-O_2NO)$ supports the notion that facile access to a unidentate bicarbonate intermediate may be an important requirement for carbonic anhydrase activity. $\{\eta^3-HB(3,5-Pr_2^i p z)\}$ CdI is monoclinic, P_1/m (No. 11), with $a = 9.840(2)$ Å, $b = 16.449(9)$ \AA , $c = 10.633(2)$ \AA , $\beta = 103.04(2)$ ^o, $V = 1677(1)$ \AA ³, and $Z = 2$. $\{\eta^3$ -HB(3-Bu^tpz)₃}CdI is tetragonal, $P\bar{4}2_1m$ (No. 113), with $a = b = 16.938(2)$ Å, $c = 9.915(2)$ Å, $V = 2845(1)$ Å³, and $Z = 4$. $\{\eta^3\text{-}HB(3-Bu^2\text{-}5Mepz)_3\}CdCH_3$ is cubic, $I\overline{4}3d$ (No. 220), with $a = 22.747(2)$ Å, $V = 11770(2)$ Å³, and $Z = 16$. $\{\eta^3\text{-}HB(3-Bu^t\text{-}5-Mepz)_{3}\}Cd(\eta^2\text{-}4)$ O₂NO) is monoclinic, $P2_1/n$ (No. 14), with $a = 10.690(1)$ Å, $b = 17.233(3)$ Å, $c = 16.272(2)$ Å, $\beta = 91.70(1)$ ^o, $V = 2996(1)$ Å³, and $Z = 4$.

Introduction

We recently reported the application of sterically-demanding **tris(pyrazoly1)hydroborato** ligands [HB(3,5-RR'pz)3]- (RR'pz $=$ substituted pyrazole)¹ to an investigation of the chemistry of a series of monomeric alkyl, hydride, and hydroxide derivatives of zinc, such as ${\eta^3-HB(3-Bu^tpz)_3}ZnCH_3$, ${\eta^3-HB(3-Bu^tpz)_3}$ -ZnH, and $\{\eta^3-HB(3-Bu^t-5-Mepz)\}$ ZnOH $(3-Bu^tpz = 3-C_3N_2 Bu^tH_2$; 3-Bu^t-5-Mepz = 3-Bu^t-5-MeC₃N₂H).²⁻⁷ Our specific interest in the hydroxide derivative $\{\eta^3-HB(3-Bu^t-5-Mepz)\}$. $ZnOH^{4-7}$ derives from its structural relationship to that of the active site of the enzyme carbonic anhydrase $[(His)_3Zn(OH_2)]^{2+}$ (His = histidine).^{8,9} Thus, the three nitrogen atom donors of the tris(pyrazolyl)hydroborato ligand bind to the zinc center in $\{\eta^3-\}$ $HB(3-Bu^t-5-Mepz)$ 3/2nOH by a manner closely analogous to those of the histidine imidazole groups in carbonic anhydrase. Further to the structural relationship, reactivity studies on $\{\eta^3-\}$ $HB(3-Bu^t-5-Mepz)_{3}ZnOH$ have also revealed a functional equivalence to the enzyme. $4-7,10$

Metal-substituted (e.g., Mn, Co, Ni, Cu, Cd, and Hg) carbonic anhydrases have also been actively investigated in order to provide information concerned with both enzyme structure and activity.^{9,11-13} Such studies are in part a consequence of the lack of suitable spectroscopic probes for the diamagnetic $d^{10} Zn(II)$ center of the native enzyme. In this regard, cadmium-substituted

- **e** Abstract published in *Advance ACS Abstracts*, February 1, 1994. Trofimenko, S. *Chem. Reu.* 1993, 93, 943-980. '
- Gorrell, I. B.; Looney, A.; Parkin, G. *J. Chem. SOC., Chem. Commun.* 1990, 220-222.
- Han, R.; Gorrell, I. B.; Looney, A. G.; Parkin, G. *J. Chem. SOC., Chem. Commun.* 1991, 717-719.
- Alsfasser, R.; Trofimenko, S.; Looney, A.; Parkin, G.; Vahrenkamp, H. *Inorg. Chem.* 1991, 30,4098-4100.
- Looney, A.; Parkin, G.; Alsfasser, R.; Ruf, M.; Vahrenkamp, H. *Angew. Chem., Int. Ed. Engl.* 1992, 31, 92-93. Han, R.; Looney, A.; McNeill, K.;Parkin,G.; Rheingold, A. L.; Haggerty,
- B. **S.** J. *Inorg. Biochem.* 1993, 49, 105-121.
- Looney, A.; Han, R.; McNeill, K.; Parkin, G. J. *Am. Chem. SOC.* 1993, 115,469@-4691.
- (a) Eriksson, A. E.; Jones, T. A.; Liljas, A. *Proteins: Struct. Funct. Gen.* 1988,4, 274-282. (b) Nair, **S.** K.; Christianson, D. W. *J. Am. Chem. SOC.* 1991, 113, 9455-9458.

carbonic anhydrase has been studied by ¹¹³Cd NMR spectroscopy.14J5 However, the activity of cadmium-substituted carbonic anhydrase is reduced substantially from that of the zinc enzyme at pH 7.^{13,16} Prompted by the reduced activity for the cadmiumsubstituted enzyme, we have initiated a study of [tris(pyrazolyl)-

- (9) (a) Silverman, D. N.; Lindskog, **S.** *Acc. Chem. Res.* **1988,** 21. 30-36. (b) Banci, L.; Bertini, I.; Luchinat, C.; Donaire, A.; Martinez, M.-J.; Moratal Mascarell, J. M. *Comments* Inorg. *Chem.* **1990,** *9,* 245-261. (c) Wooley, P. *Nature* 1975,258,677-682. (d) Bertini, I.; Luchinat, Lindskog, S. In Zinc Enzymes; Spiro, T. G., Ed.; Wiley: New York, 1983; pp 71-122. **(f)** Sigel, H., Ed. *Zinc and its Role in Biology and Nutrition; Metal Ions in Biological Systems,* Vol. **15;** Marcel Dekker: New York, 1983. **(g)** Botre, **F.;** Gros, G., Storey, B. T., **Eds.** *Carbonic Anhydrase;* VCH: New York, 1991. (h) Khalifah, R. G.; Silverman, D. N. **In** *The Carbonic Anhydrases;* Dodgson, **S.** J., Tashian, R. E.; Gros, G., Carter, N. D., Eds.; Plenum Publishing Corp.: New York, 1991; pp 49-70. (i) Lindskog, **S.** *Adu. Inorg. Biochem.* 1982,4, **115.-** 170. *6)* Bertini, I., Luchinat, C., Maret, W., Zeppezauer, M., **Eds.** *Zinc Enzymes; Progress in Inorganic Biochemistry and Biophysics,* Vol. I;
- Birkhäuser: Boston, 1986.
(10) Alsfasser, R.; Powell, A. K.; Trofimenko, S.; Vahrenkamp, H. *Chem.* Ber. 1993, 126, 685-694.
- (I 1) (a) Bertini, I.; Luchinat, C. *Ann. N.Y. Acad. Sci.* 1984,429,89-98. (b) Bertini, I.; Canti, G.; Luchinat, C.; Scozzafava, A. J. Chem. Soc., Dalton
Trans. 1978, 1269–1273. (c) Moratal, J. M.; Martinez-Ferrer, M.-J.;
Donaire, A.; Castells, J.; Salgado, J.; Jiménez, H. R. J. Chem. Soc., *Dalton Trans.* 1991, 3393-3399.
- (12) (a) Lindskog, S.; Malmström, B. G. *J. Biol. Chem.* 1962, 237, 1129-1137. (b) Thorslund, A.; Lindskog, S. Eur. J. Biochem. 1967, 3, 117–123. (c) Williams, R. J. P. J. Mol. Catal. 1985, 30, 1–26. (13) (a) Coleman, J. E. Nature 1967, 214, 193–194. (b) Bauer, R.; Limkilde,
- P.; Johansen, J. T. *Biochemistry* 1976, 15, 334-342.
- (14) (a) Jonsson, N. B.-H.; Tibell, L. A. E.; Evelhoch, J. L.; Bell, S. J.; Sudmeier, J. L. *Proc. Natl. Acad. Sci. U.S.A.* 1980,77,3269-3272. (b) Armitage, I. H.; Pajer, R. T.; Schoot Uiterkamp, A. J. M.; Chlebowski, J. **F;** Coleman, J. E. *J. Am. Chem. SOC.* 1976, 98, 5710-5711. (c) Armitage, I. H.;Schoot Uiterkamp, A. J. M.; Chlebowski, J. **F.;** Coleman, J. E*. J. Magn. Reson.* 1977, 29, 375–392. (d) Sudmeier, J. L.; Bell, S.
J*. J. Am. Chem. Soc.* 1977, 99, 4499–4500. (e) Evelhoch, J. L.; Bocian,
D. F.; Sudmeier, J. L. *Biochemistry* 1981, 20, 4951–4954.
- (15) For I"Cd NMR in other systems see: (a) Summers, M. *Coord. Chem. Reu.* 1988,86,43-134. (b) Rivera, E.; Kennedy, M. A.;Ellis, P. D. *Adu. Magn. Reson.* 1989, 13, 257-273. (c) Kennedy, M. A.; Ellis, P. D. *J. Am. Chem. Soc.* 1989,111,3195-3203. (d) Ellis, P. D. *J. Biol. Chem.* 1989,264,3 108-31 10. (e) Munakata, M.; Kitagawa,S.; Yagi, F. *Inorg. Chem.* 1986, 25,964-970.
- (16) It should be noted that activity of cadmium-substituted carbonic anhydrase may be enhanced at higher pH values *(ca.* pH 9). See ref 13.

¹ Present address: Collegeof Education, Chemistry Department, Ain Shams University, Cairo, Egypt.

Tris(pyrazoly1)hydroborato Complexes of Cadmium

Figure 1. Structures of $\{n^3-HB(3,5-RR'pz)\}$ CdX complexes.

Figure 2. Molecular structure of $\{\eta^3-HB(3,5-Pr^i_2pz)_3\}CdI$.

hydroborato] cadmium complexes in order to provide information that may explain the origin of the difference in activity between the zinc and cadmium enzymes. **In** this paper, we describe the synthesis and structures of some alkyl, halide, and nitrate derivatives of cadmium that are supported by tris(pyrazoly1) hydroborato ligation. **In** particular, the coordination mode of the nitrate ligand in the complex $\{ \eta^3-HB(3-Bu^1-5-Mepz)\}$ Cd $(\eta^2 O₂NO$) will be of central importance.

Results

[Tris(pyrazolyl)hydroborato]cadmium complexes of the type $\{\eta^3-HB(3,5-RR'pz)_3\}CdX[3,5-RR'pz = 3-Bu^tpz, 3-Bu^t-5-Mepz,$ 3,5- $Prⁱ_{2}pz$; $X = CH_{3}$, I, NO_{3}], as shown in Figure 1, have been synthesized by the reaction between CdX_2 and either the potassium or thallium reagent $M{HB(3,5-RR'pz)}_3$ (M = K, Tl), as

illustrated by eqs 1–4. The molecular structures of each of the
CdI₂ + K{HB(3,5-Prⁱ₂pz)₃}

$$
{\eta^3-HB(3,5-Pri2pz)3}CdI + KI (1)
$$

CdI₂ + Tl{ η ³-HB(3-Bu^tpz)₃} \rightarrow ${n^3-HB(3-Bu^tpz)_3}CdI + TII (2)$

$$
Cd(NO3)2 + K{HB(3-But-5-Mepz)3} \rightarrow
$$

{ η ³-HB(3-Bu^t-5-Mepz)₃}Cd(η ²-O₂NO) + KNO₃ (3)

$$
Cd(CH_3)_2 + T1{n3-HB(3-But-5-Mepz)3} \rightarrow
$$

$$
{Gd(CH_3)_2 + T1{n3-HB(3-But-5-Mepz)3} \rightarrow
$$

$$
{n3-HB(3-But-5-Mepz)3}CdCH_3 + [TICH_3]_{dec}
$$
 (4)

derivatives { η^3 -HB(3,5-Prⁱ₂pz)₃}CdI, { η^3 -HB(3-Bu^tpz)₃}CdI, { η^3 -HB(3-Bu^t-5-Mepz)₃}CdCH₃, and { η ³-HB(3-Bu^t-5-Mepz)₃}Cd(η ²-O2NO) have been determined by X-ray diffraction as shown in Figures **2-5.** Selected bond lengths and angles are presented in Tables **1-8,** with atomic coordinates in Tables **9-12.**

Discussion

Figure 4. Molecular structure of $\{n^3-HB(3-Bu^t-5-Mepz)_3\}CdCH_3$.

Figure 5. Molecular structure of $\{\eta^3 - HB(3-Bu^t-5-Mepz)\}Cd(\eta^2-O_2NO)$.

Table 1. Selected Bond Lengths (A) for $\{q^3-HB(3,5-Pr^i_{2}pz)\}$ CdI

			.
$Cd-I$	2.622(1)	$Cd-N(12)$	2.221(5)
$Cd-N(22)$	2.219(5)	$Cd-N(22')$	2.219(5)
$N(11) - N(12)$	1.361(8)	$N(11)-B$	1.556(10)
$N(21) - N(22)$	1.371(6)	$N(21)-B$	1.550(6)
$N(21') - B$	1.550(6)		

facile contamination with the six-coordinate sandwich complex ${\pi^3-HB(3,5-Me_2pz)_3}2Cd.¹⁷$ However, by the use of more sterically-demanding **tris(pyrazoly1)hydroborato** ligands, we have found that cadmium complexes of the type $[\eta^3-HB(3,5-RR'pz)_3]$ -CdX may be readily synthesized by metathesis reactions **(eqs** 1-4). The synthesis of the alkyl derivative $\{\eta^3\text{-HB}(3-Bu^1\text{-}5\text{-}$ $Mepz$)^{CdCH} is based on the method that we had developed

Recent attempts to synthesize the complexes $\{\eta^3-HB(3,5-Me_2$ $pz)_{3}CdX$ (X = Cl, I) have met with only limited success due to

(17) McWhinnie, W.R.;Monsef-Mirzal,Z.;Perry,M.C.;Shaikh,N.;Hamor, T. A. *Polyhedron* **1993,** *12,* **1193-1 199.**

previously for the preparation of the related magnesium and zinc derivatives $\{\eta^3-HB(3,5-RR'pz)_3\}MR$ (M = Mg, Zn), namely the reaction between MR_2 and the thallium reagent $T1\{n^3-HB(3,5 RR'pz$)₃}.^{2,18} The thallium derivative $T1{n^3-HB(3,5-RR'pz)}$ is generally the reagent of choice because the deposition of T1, due to decomposition of unstable [TIR], provides an effective driving force for the reaction.¹⁹ More recently, using a similar procedure, Reger synthesized an extensive series of cadmium alkyl derivatives of the less sterically-demanding **tris(3,5-dimethylpyrazolyl)** hydroborato ligand $\{\eta^3-HB(3,5-Me_2pz)_3\}CdR$.²⁰

 $N(21) - B-N(31)$

11 1.7(4) 110.5(4)

 $\overrightarrow{O(2)}$ -N- $\overrightarrow{O(3)}$ 126.3(6) N(11)-B-N(21)
N(11)-B-N(31) 111.3(4) N(21)-B-N(31)

The molecular structures of the complexes ${n^3-HB(3,5-Pr₂-\n$ pz)₃}CdI, { η^3 -HB(3-Bu^tpz)₃}CdI, { η^3 -HB(3-Bu^t-5-Mepz)₃}CdCH₃, and $\{\eta^3-HB(3-Bu^1-5-Mepz)\}Cd(\eta^2-O_2NO)$ are illustrated in Figures 2-5. Each of the complexes exhibit a similar coordination of the **tris(pyrazoly1)hydroborato** ligands to the cadmium center, as evidenced by the average Cd-N bond lengths and N-Cd-N bond angles: $\{ \eta^3-HB(3,5-Pr^2pz)\}$ CdI [2.22 Å, 86.0°], $\{ \eta^3-HB(3-Pr^2pz)\}$ Bu^tpz)₃}CdI [2.25 Å, 88.5°], { η ³-HB(3-Bu^t-5-Mepz)₃}CdCH₃ $[2.31 \text{ Å}, 85.2^{\circ}]$, and $\{\eta^{3} - \text{HB}(3 - \text{Bu}^{t} - 5 - \text{Mepz})_{3}\} \text{Cd}(\eta^{2} - \text{O}_{2}\text{NO})$ [2.24 $\mathbf{A}, 89.8^{\circ}$. It is noteworthy that the Cd–N bond lengths in these

Table 9. Atom Coordinates $(\times 10^4)$ and Temperature Factors $(\mathbf{A}^2 \times \mathbf{A}^3)$ 10³) for $\{\eta^3 - HB(3, 5-Pr^i{}_2pz)_3\}CdI$

atom	x	у	z	Uª
$_{\rm Cd}$	9531(1)	2500	8945(1)	57(1)
I	9557(1)	2500	6484(1)	113(1)
N(11)	11008(6)	2500	11824(5)	48(2)
N(12)	11324(6)	2500	10642(5)	54(2)
N(21)	8717(4)	1724(3)	11309(4)	52(1)
N(22)	8598(4)	1577(3)	10019(4)	56(2)
C(11)	12226(8)	2500	12751(7)	58(3)
C(12)	13308(9)	2500	12126(8)	72(3)
C(13)	12716(8)	2500	10819(7)	60(3)
C(14)	12280(8)	2500	14188(7)	70(3)
C(15)	13371(9)	2500	9672(9)	74(3)
C(16)	12915(16)	3246(7)	14792(8)	205(8)
C(17)	14113(24)	3098(11)	9567(16)	529(20)
C(21)	8108(6)	1106(4)	11816(5)	65(2)
C(22)	7626(7)	573(4)	10838(6)	83(3)
C(23)	7938(6)	872(4)	9737(5)	66(2)
C(24)	8054(7)	1060(4)	13230(6)	80(3)
C(25)	7668(8)	538(4)	8393(7)	91(3)
C(26)	6742(11)	1261(11)	13481(10)	219(9)
C(27)	8546(18)	304(11)	13803(10)	350(15)
C(28)	6323(11)	665(12)	7668(10)	260(10)
C(29)	8303(14)	$-233(9)$	8337(11)	230(9)
В	9463(8)	2500	11946(7)	45(3)

*^a*Equivalent isotropic *U* defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Table 10. Atom Coordinates (X104) and Temperature Factors **(A2** \times 10³) for { η ³-HB(3-Bu^tpz)₃}CdI

atom	x	у	z	Uª
Cd	7958(1)	2958(1)	5383(2)	45(1)
I	9043(1)	4043(1)	4749(2)	69(1)
N(11)	6753(8)	1753(8)	4490(19)	49(5)
N(12)	7267(7)	2267(7)	3871(17)	43(5)
C(11)	6334(11)	1334(11)	3495(27)	52(7)
C(12)	6616(11)	1616(11)	2262(32)	64(9)
C(13)	7151(10)	2151(10)	2517(21)	42(6)
C(14)	7623(11)	2623(11)	1510(26)	58(7)
C(15)	7415(16)	2415(16)	108(27)	96(8)
C(16)	7462(11)	3513(10)	1778(22)	74(8)
N(21)	7446(8)	1390(7)	6644(13)	50(5)
N(22)	8141(7)	1835(7)	6565(12)	44(4)
C(21)	7583(11)	726(10)	7319(18)	59(6)
C(22)	8367(11)	718(11)	7680(17)	63(7)
C(23)	8693(10)	1431(11)	7238(16)	50(6)
C(24)	9534(9)	1703(12)	7330(19)	73(7)
C(25)	9912(14)	1779(15)	5976(20)	104(10)
C(26)	9996(15)	1088(18)	8227(30)	182(16)
C(27)	9539(10)	2555(12)	7955(22)	95(9)
в	6649(15)	1649(15)	6002(38)	58(9)

 a Equivalent isotropic U defined as one-third of the trace of the orthogonalized **U,j** tensor.

complexes are shorter than those in the six-coordinate sandwich complex $\{\eta^3-HB(3,5-Me_2pz)\}$ ₂Cd [2.36(1) and 2.43(2) Å].^{17,21}

The Cd-I bond lengths in $\{\eta^3-HB(3,5-Pr^i_2pz)_3\}CdI$ and $\{\eta^3-HB(3,5-Pr^i_2pz)_3\}CdI$ HB(3-Butpz)3JCdI are 2.622(1) and 2.673(2) **A,** respectively, and are both shorter than the sum of covalent radii (2.81 Å) .²² Since these complexes represent well-defined examples of fourcoordinate cadmium, these results may suggest that a more appropriate value for the covalent radius of cadmium in such complexes is ca. 1.32 Å [on the basis that $r_{cov}(I) = 1.33$ Å], rather than the literature value of 1.48 Å.²² Similarly, the Cd–CH₃ bond length of 2.07(2) Å in $\{\eta^3-HB(3-Bu^t-5-Mepz)\}CdCH_3$ is also shorter than the sum of the covalent radii $(2.25 \text{ Å})^{22}$ but is close to thevalue of 2.09 **A** that is obtained byassuminga modified covaient radius of 1.32 **A** for cadmium. Moreover, the Cd-CH3 bond length of 2.07(2) *8,* is also close to the established range for other Cd-CH3 bond lengths (2.09-2.1 1 **A).** For reference, Cd-C bond lengths for some alkyl, ary!, and cyclopentadienyl derivatives are listed in Table 13. However, it should be noted that the thermal parameters of the carbon atom of the Cd -CH₃ group are

⁽¹⁸⁾ Han, R.; Parkin, **G.** *Organometallics* **1991,** *10,* 1010-1020.

⁽¹⁹⁾ Gilman, H.; Jones, R. *G.* J. *Am. Chem. SOC.* **1946,158,** 517-520.

⁽²⁰⁾ Reger, D. L.; Mason, **S. S.** *Organometallics* **1993,** *12,* 2600-2603.

Table 11. Atom Coordinates (\times 10⁴) and Temperature Factors (\AA ² \times 10³) for $\{\eta^3-HB(3-Bu^t-5-Mepz)_3\}CdCH_3$

atom	x	ν	z	IJa
$_{\rm Cd}$	411(1)	411(1)	411(1)	47(1)
С	938(5)	938(5)	938(5)	105(7)
N(11)	$-17(4)$	$-822(3)$	$-30(4)$	35(3)
N(12)	422(5)	$-600(3)$	314(4)	37(3)
C(11)	$-47(5)$	$-1412(4)$	6(5)	38(4)
C(12)	394(5)	$-1578(4)$	383(6)	50(4)
C(13)	675(5)	$-1059(5)$	581(5)	48(4)
C(14)	$-470(5)$	$-1785(5)$	$-311(6)$	55(5)
C(15)	1187(5)	$-981(6)$	997(5)	51(4)
C(16)	957(8)	$-681(9)$	1554(6)	104(9)
C(17)	1441(8)	$-1590(7)$	1140(8)	101(8)
C(18)	1671(6)	$-600(8)$	713(7)	86(7)
в	$-422(6)$	$-422(6)$	$-422(6)$	36(3)

Equivalent isotropic *U* defined as one-third of the trace of the orthogonal U_{ij} tensor.

Table 12. Atom Coordinates $(X10⁴)$ and Temperature Factors $(A²)$ \times 10³) for $\{\eta^3 - HB(3-Bu^t - 5-Mepz)_3\}Cd(\eta^2 - O_2NO)$

atom	x	у	z	U^a
Cd	2353(1)	7168(1)	7183(1)	51(1)
O(1)	271(6)	6900(5)	7125(5)	236(5)
O(2)	1233(5)	6175(4)	6576(6)	223(5)
O(3)	$-718(4)$	5980(3)	6570(3)	103(2)
N	220(4)	6342(3)	6742(3)	75(2)
N(11)	3772(4)	8224(2)	8349(2)	54(1)
N(12)	2768(4)	7733(2)	8404(2)	56(1)
N(21)	3908(4)	8579(2)	6827(2)	53(1)
N(22)	2851(4)	8251(2)	6494(2)	54(1)
N(31)	5128(4)	7418(2)	7404(2)	55(1)
N(32)	4351(4)	6796(2)	7209(2)	59(1)
C(11)	3957(5)	8591(3)	9072(3)	66(2)
C(12)	3068(6)	8342(3)	9589(3)	74(2)
C(13)	2327(5)	7804(3)	9166(3)	60(2)
C(14)	4963(7)	9175(4)	9232(4)	106(3)
C(15)	1247(5)	7336(3)	9472(3)	68(2)
C(16)	1097(13)	7463(8)	10361(5)	226(7)
C(17)	82(8)	7549(9)	9042(7)	222(7)
C(18)	1492(8)	6499(5)	9339(6)	142(4)
C(21)	4220(5)	9210(3)	6378(3)	61(2)
C(22)	3366(5)	9281(3)	5751(3)	71(2)
C(23)	2517(5)	8673(3)	5829(3)	60(2)
C(24)	5337(6)	9700(4)	6577(4)	92(3)
C(25)	1380(6)	8491(3)	5295(3)	82(2)
C(26)	201(6)	8541(6)	5772(5)	150(4)
C(27)	1296(9)	9052(6)	4577(5)	201(6)
C(28)	1496(7)	7689(4)	4935(4)	106(3)
C(31)	6317(5)	7186(3)	7420(3)	70(2)
C(32)	6324(5)	6410(4)	7232(3)	77(2)
C(33)	5098(5)	6176(3)	7114(3)	68(2)
C(34)	7403(5)	7707(4)	7595(5)	100(3)
C(35)	4576(7)	5383(3)	6900(4)	95(3)
C(36)	3596(7)	5137(4)	7499(4)	116(3)
C(37)	4008(8)	5398(4)	6034(4)	133(4)
C(38)	5649(8)	4794(5)	6943(7)	196(6)
В	4609(5)	8239(4)	7594(3)	57(2)

'Equivalent isotropic *U* defined as one-third of the trace of the orthogonalized U_{tt} tensor.

not particularly well-behaved, so that the derived bond length should be regarded with a degree of caution.23

The methyl derivative $\{\eta^3-HB(3-Bu^t-5-Mepz)_3\}CdCH_3$ has also been studied by 1H and 13C NMR spectroscopy. **In** particular, the $H NMR$ signal of the Cd–CH₃ group is characterized by the observation of both ¹¹¹Cd (²J_{Cd-H} = 71 Hz) and ¹¹³Cd (²J_{Cd-H} = 74 Hz) satellites,²⁴ as shown in Figure 6. The ${}^{2}J_{\text{Cd-H}}$ coupling constants for ${n^3-HB(3-Bu^t-5-Mepz)_3}CdCH_3$ are greater than those for the two-coordinate alkyls R_2Cd (50-53 Hz)²⁵ but less than those for tetrameric alkoxides $[(RO)CdCH₃]_{4}$ (80–90 **Hz) .26327**

The coordination mode of the nitrate ligand in $\{\eta^3-HB(3-Bu^1 5-Mepz$ ₃}Cd(η ²-O₂NO) is of particular interest to the present study. We have recently suggested that, among other factors,

Table 13. Some Cd-C Bond Lengths

compound	$d(Cd-C)$, Å	ref
$(CH_3)_2$ Cd	$2.112(4)$ ^a	b
$[(CH2=CHMe2Si)(Me3Si)2C]2Cd$	2.172(3)	c
$[(CH3)2Cd(1,4-dioxane)]n$	2.09(2)	d
(CH ₃) ₂ Cd(bipy)	2.17(3)	e
	2.15(2)	
$(Me3SiCH2)2Cd(bipy)$	2.19(6)	
	2.09(5)	
$\{\eta^3-HB(3-Bu^t-5-Mepz)_3\}CdCH_3$	2.07(2)	this work
$[(NC5H4)SiMe3)2C]2Cd$	2.27	
$[2-(Me2NCH2)C6H4]$ ₂ Cd	2.154(8)	g h
$[2,4,6-(CF_3)_3C_6H_2]_2Cd(MeCN)$	2.184(3)	
	2.181(3)	
$Cp_2Cd(NC_5H_5)_2$	2.353(5)	i
	2.307(5)	
$[Cp^*Cd[\mu-N(SiMe_3)_2]]_2$	2.220(6)	k

Raman studies in gas phase. *b* Rao, K. S.; Stoicheff, B. P.; Turner, R. Can. J. Phys. 1960, 38, 1516. ^c Ayoko, G. A.; Buttrus, N. H.; Eaborn, C.; Hitchcock, P. B.; Smith, J. D. *J. Organomet. Chem.* 1987, 320, 137-143. dAlmond, M. J.; Beer, M. P.; Drew, M. G. B.; Rice, D. A. *J. Organomet. Chem.* 1991, 421, 129-136. « Almond, M. J.; Beer, M. P.; Drew, M. G. B.; Rice, D. A. *Organometallics* 1991, *10,* 2072-2076. *^f*Bushnell, G. W.; Stobart, **S.** R. *Can. J. Chem.* 1980, *58,* 574-578. **^g**Henderson, M. J.;Papasergio, R. I.; Raston,C. L.; White, A. H.;Lappert, M. F. *J. Chem. Soc., Chem. Commun.* 1986, 672-674. ^h (i) Khan, O. F. Z.; Frigo, D. M.; O'Brien, P.; Howes, A.; Hursthouse, M. B. *J. Organomet. Chem.* 1987,334, C27-C30. (ii) Atwood, J. L.; Berry, D. E.; Stobart, S. R.; Zaworotko, M. J. *Inorg. Chem.* 1983, 22, 3480-3482. ^{*i*} Brooker, S.; Bertel, N.; Stalke, D.; Noltemeyer, M.; Roesky, H. W.; Sheldrick, G. M.; Edelmann, F. T. *Organometallics* 1992,Il, 192-195. (i) **Smeets,** W. J. J.; Spek, A. L.; Fischer, B.; van Mier, G. P. M.; Boersma, J. *Acta Crystallogr.* 1987, *C43,* 893-895. (ii) Fischer, B.; van Mier, G. P. M.; Boersma, J.; Smeets, W. J. J.; Spek, A. L. J. *Organomet. Chem.* 1987, 322, C37-C40. ^k Cummins, C. C.; Schrock, R. R.; Davis, W. M. *Organometallics* 199 1, *IO,* 3 7 8 1-3 7 8 5,

thecoordination mode *(i.e.* unidentate *versus* bidentate) exhibited in the bicarbonate intermediateof the carbonic anhydrase catalytic cycle may be an important factor in influencing the activity of metal-substituted enzymes.^{6,7} We also proposed that the changes in coordination mode of nitrate ligands in a series of structurally related metal complexes may provide an indication of the relative preferences for unidentate *uersus* bidentate bicarbonate intermediates in the catalytic cycles of metal-substituted carbonic anhydrases.^{6,7} The basis of this suggestion is the observation that the variation of the coordination mode of the nitrate ligands in the complexes $\{\eta^3-HB(3-Bu^tpz)_3\}M(NO_3)$ (M = Co, Ni, Cu,

- $r_{\text{cov}}(Cd) = 1.48 \text{ Å}, r_{\text{cov}}(Zn) = 1.31 \text{ Å}, r_{\text{cov}}(C) = 0.77 \text{ Å}, r_{\text{cov}}(I) = 1.33$ (22) A. See: Pauling, L. *The Nature of the Chemical* Bond, Cornel1 University Press: Ithaca, NY, 1960.
- (23) The ill-behaved thermal parameter may be a consequence of (i) a poor absorption correction, (ii) cocrystallization with an unidentified isos-tructural impurity, or (iii) disorder of a different nature. See: (a) Parkin, G. *Acc. Chem. Res.* 1992, 25, 455-460. (b) Parkin, G. *Chem. Rev.* 1993,93, 887-911.
- 111Cd $(I = 1/2, 12.75\%, \gamma = -5.7046 \times 10^7 \text{ rad s}^{-1} \text{ T}^{-1})$ and ¹¹³Cd $(I = 1/2, 12.26\%, \gamma = -5.9609 \times 10^7 \text{ rad s}^{-1} \text{ T}^{-1})$. The ratio $2J_{\text{III}}\text{C}_{4-H}(0.96)$ is close to that predicted by the ratio $\gamma^{(111)}\text{Cd}/\gamma^{(113)}\$
- 1187-1 191.
- It has been suggested that changes in *J_{Cd-H}* correlate with effective nuclear charge at cadmium. See ref 26 and: Kennedy, J. D.; McFarlane, W. J. *Chem. SOC., Dalton Trans.* 1976, 1219-1223.

Prⁱ3C₆H₂), 2.28 (1) **A**;^{21a} C₂H₄[MeNCH₂(3,5-Me₂pz)]2CdCl₂, 2.431(3)
and 2.478(3) A;^{21b} { n^3 -O[CH2CH₂(3,5-Me₂pz)]3}Cd(n^2 -NO3)2, 2.26 A Some other Cd-N bond lengths: $(1-Me\text{-}\text{imid})_2\text{Cd}(SR)_2$ (R (average);^{21c} { η^3 -HN[CH₂CH₂(3,5-Me₂pz)]₂}Cd(η^2 -NO₃)₂, 2.31 Å (average);^{21c} Cd₂(bddo)₂(NCS)₄, 2.32 Å (average);^{21d} [Cd(1-Me-
imid)₆]²⁺, 2.35 Å (average).^{21e} (a) Corwin, D. T., Jr.; Gru Koch, **S.** A. J. *Chem. SOC., Chem. Commun.* 1987,966-967. (b) Paap, F.; Erdonmez, A.; Driessen, W. L.; Reedijk, J. *Acta Crystallogr.* 1986, *C42,* 783-785. (c) Griffith, E. A. H.; Charles, N. G.; Lewinski, K.; Amma, E. L.; Rcdesiler, P. *Inorg. Chem.* 1987, 26, 3983-3989. (d) Haanstra, W. G.; Driessen, W. L.; Reedijk, J.; Turpeinen, U.; **Hi**millinen, R. J. *Chem. Soc., Dalton Trans.* 1989, 2309-2314. (e) Rodesiler, P. F.; Charles, N. G.; Griffith, E. A. H.; Lewinski, K.; Amma, E. L. *Acta Crystallogr.* 1986, C42, 396-399.

Figure 6. ¹H NMR signal of the Cd–CH₃ group in $\{\eta^3\text{-HB}(3-Bu^tpz)\}$. CdCH3.

Zn) correlates with the activity of the metal-substituted carbonic anhydrases. Thus, the nitrate ligand coordination mode in $\{\eta^3-\}$ $HB(3-Bu^tpz)_{3}M(NO_3)$ (M = Co, Ni, Cu, Zn) varies from unidentate for **Zn** to symmetric bidentate for Ni and Cu, with the cobalt derivative exhibiting an asymmetric coordination mode.28 Significantly, the activity of the metal-substituted enzymes also decreases across the series $Z_n > C_0 \gg Ni$ and $Cu, ¹¹⁻¹³$ a sequence that therefore correlates with the coordination mode of the nitrate ligands in the model complexes $\{\eta^3-HB(3-\eta)\}$ $Bu^tpz)$ ₃ $(M(NO₃))$ (M = Co, Ni, Cu, Zn).²⁹ Indeed, subsequent to our original report on the model complex $\{\eta^3-HB(3-Bu^tpz)\}$ $Zn(\eta^1\text{-}ONO_2),$ ³⁰ the X-ray structure of the nitrate derivative of human carbonic anhydrase **I1** has shown that the nitrate ligand is coordinated to the zinc center *via* only one of its oxygen atoms.31

Cadmium-substituted carbonic anhydrase is less active than the zinc enzyme.^{13,16} Many factors, such as the higher pK_a of the coordinated water, 13,16,32 may be responsible for the lower activity of cadmium-substituted carbonic anhydrase. Nevertheless, it was of interest to determine the coordination mode of the nitrate ligand in a related cadmium complex in order to examine the previously observed correlation between enzyme activity and the ease with a metal center may stabilize bidentate coordination.6,7,33,34

As illustrated in Figure 5, the cadmium derivative $\{\eta^3-HB(3-\eta)\}$ $Bu \text{·} - 5-Mepz$ ₃ $Cd(\eta^2-O_2NO)$ exhibits bidentate coordination of the nitrate ligand, with very similar Cd-0 bond lengths of 2.272- *(6)* and 2.295(7) **A.3s** The observation of an almost symmetric bidentate coordination mode in $\{m^3-HB(3-Bu^t-5-Mepz)\}$ $Cd(n^2 O₂NO$) contrasts with the significantly different Zn-O interactions [1.978(3) and 2.581(3) **A]** in the related zinc complex

- (28) For further informationon nitratecoordination modes see: (a) Addison, C. C.; Logan, N.; Wallwork, **S.** C.; Garner, C. D. Q. *Rev.,* Chem. *SOC.* 1971, 25, 289-322. (b) Kleywegt, G. J.; Wiesmeijer, W. G. R.; Van Driel, G. J.; Driessen, W. L.; Reedijk, J.; Noordik, J. H. *J.* Chem. SOC., Dalton Trans. 1985, 2177-2184. (c) Suslick, K. *S.;* Watson, R. A. Inorg. Chem. 1991, 30, 912-919.
(29) Furthermore, Kitajima recently reported similar structural changes for
- (29) Furthermore, Kitajima recently reported similar structural changes for
a series of binuclear bridging carbonate complexes, $[\{\eta^3-HB(3,5-Pr\}-pz)_3\}M_2(\mu$ -CO₃) (M = Fe, Co, Ni, Cu, Zn): Kitajima, N.; Hikichi, S.;
Tana (30) Han, R.; Parkin, G. *J.* Am. Chem. *SOC.* 1991, 113, 9707-9708.
- (31) The **Zn-O** distance is 2.8 **A,** indicating a relatively weak association. Moreover, the nitrate ligand does not displace the coordinated water from the zinccenter. See: Mangani, **S.;** Hdkansson, K. Eur. J. Biochem. 1992, 210, 867-871.
- (32) Garmer, D. R.; Krauss, M. J. Am. Chem. *SOC.* 1992,114,6487-6493.
- (33) We emphasize that it is the structural *changes* of nitrate coordination mode that provide an indication of the changes that may be expected for the corresponding bicarbonate complexes. Thus, this argument does not require that a nitrate coordination mode must be identical to that of the corresponding bicarbonate complex.
- (34) We also note that Mn(I1)-substituted carbonic anhydrase, which is less active than the zinc enzyme, has also been proposed to exhibit bidentate bicarbonate coordination. See: (a) Led, J. J.; Neesgaard, E. Bio-chemistry 1987, 26, 183-192. (b) Led, J. J.; Neesgaard, E.; Johansen, J. T. FEBS *Lett.* 1982, 147, 74-80.

 ${n^3-HB(3-Bu^tpz)_3}Zn(\eta^1-ONO_2)$. The ability of cadmium to stabilize the bidentate coordination mode is presumably a reflection of larger size of Cd compared to its lighter congener $Zn^{36,37}$ Thus, in line with the reduced activity of cadmiumsubstituted carbonic anhydrase, it is significant that the cadmium derivative $\{\eta^3-HB(3-Bu^t-5-Mepz)_3\}Cd(\eta^2-O_2NO)$ also exhibits bidentate coordination of the nitrate ligand. **As** such, this observation thereby provides further support for the proposal that it is important to consider the nature of the bicarbonate intermediate *(i.e.* unidentate *versus* bidentate) when oneevaluates the origin of the different activities of metal-substituted carbonic anhydrases. However, it is not intended to suggest that this factor alone is responsible for influencing the activity of metal-substituted carbonic anhydrases, and other factors, such as the coordination environment and the pK_a of the coordinated water, must naturally also be considered.

Experimental Section

General Considerations. All manipulations were performed using a combination of glovebox, high-vacuum, and Schlenk techniques.³⁸ Solvents were purified and degassed by standard procedures. ¹H and ¹³C NMR spectra were recorded on Varian VXR 200, 300, and 400 spectrometers. IR spectra were recorded as KBr pellets or Nujol mulls between KBr disks on a Perkin-Elmer 1420 spectrophotometer and are reported in cm-l. Mass spectra were obtained **on** a Nermag R10-10 mass spectrometer using chemical ionization $(NH_3$ or CH_4) techniques. Elemental analyses were obtained using a Perkin-Elmer 2400 CHN elemental analyzer. K{HB(3-Bu^tpz)₃},³⁹ Tl{ η ³-HB(3-Bu^tpz)₃},³⁹ K{HB(3-Bu^t-5-Mepz)₃},⁴⁰ Tl{ n^3 -HB(3-Bu^t-5-Mepz)₃},⁴⁰ K{HB(3,5-Pr¹₂pz)₃},⁴¹ and $Cd(CH₃)₂⁴²$ were prepared by literature methods.

Synthesis of $\{\eta^3\text{-}HB(3,5-Pr_2\text{-}p\text{z})_3\}$ **CdI.** A solution of K $\{HB(3,5-Pr_2$ pz)₃} (0.50 g, 0.99 mmol) in C_6H_6 (20 mL) was added dropwise to a suspension of CdI₂ (0.44 g, 1.18 mmol) in C_6H_6 (20 mL), resulting in the immediate formation of a yellow precipitate. The mixture was stirred overnight at room temperatureand filtered. The filtratewas **concentrated** and placed at 0° C, giving a crop of colorless crystals. The crystals of (q3-HB(3,5-Pr\$pz)3]CdI were isolated by filtration and dried *in* uacuo (0.38 g, 54%). Anal. Calcd for **(q3-HB(3,5-Pri2pz)3)CdI:** C, 46.0; H, 6.6; N, 11.9. Found: C, 45.7; H, 6.1; N 11.9. ¹H NMR (C₆D₆): δ 1.12 $[18H, d, {}^{3}J_{H-H} = 7, \eta^{3} - H B(C_{3}N_{2}H(CHMe_{2})_{2})$, 1.18 [18H, d, ${}^{3}J_{H-H} =$ 7, η^3 -HB{C₃N₂H(CHMe₂)₂}₃], 3.45 [3H, spt, ³J_{H-H} = 7, η^3 -HB{C₃N₂H- $(CHMe₂)₂$ ₃], 3.55 [3H, spt, ³J_{H-H} = 7, η ³-HB{C₃N₂H(CHMe₂)₂}₃], 5.83 [3H, s, η^3 -HB{C₃N₂H(CHMe₂)₂}₃]. ¹³C NMR (C₆D₆): *δ* 23.5 [6C, q, $^{1}J_{\text{C-H}}$ = 126, $\eta^{3}-HB\{C_{3}N_{2}H(CHMe_{2})_{2}\}$, 23.6 [6C, q, ¹J_{C-H} = 127, η^{3} -

- (35) For some other examples of cadmium nitrate derivatives, see ref 28b and: (a) Cameron, A. F.; Taylor, D. W.; Nuttall, R. H. *J.* Chem. **Soc.,** Dalton *Trans.* **1972**, 1608-1611. (b) Griffith, E. A. H.; Charles, N. G.; Rodesiler, P. F.; Amma, E. L. Polyhedron 1985, 4, 615-620. (c) Banerjee, A.; Brown, C. J.; Jain, P. C.; Gautam, P. Acta Crystallogr. 1984,C40,1161-1164. (d) **Griffith,E.A.H.;Charles,N.G.;Rodesiler,** P. F.; Amma, E. L. *Acta Crystallogr*. **1983**, *C39*, 331–333. (e) Rodesiler, P. F.; Turner, R. W.; Charles, N. G.; Griffith, E. A. H.; Amma, E. L. *Inorg. Chem.* **1984**, 23, 999–1004.
- (36) For some other examples of differences in coordination numbers between zinc and cadmium derivatives **see:** (a) Reddy, H. K.; Zhang, C.; Schlemper, E. 0.; Schrauzer, G. N. Inorg. Chem. 1992,31,1673-1677. (b) Kimura, E.; Koike, T.; Shiota, **T.;** Iitaka, Y. lnorg. Chim. 1990,29, 4621-4629.
- (37) An interesting example where a cadmium derivative exhibits unidentate dination is provided by the complexes Cd(OenNdienH₄)(η ¹-NO₃)₂ and Zn(OenNdienH₄)(η ¹-NO₃)(η ²-NO₃). However, in this case the macrocyclic OenNdienH₄ ligand also adopts different coordination modes. See: Adam, K. R.; Dancey, K. **P.;** Leong, A. J.; Lindoy, L. F.; McCool, B. J.; McPartlin, M.; Tasker, P. A. *J. Am. Chem. Soc.* 1988, 110, 8471-8477.
- (38) (a) McNally, J. P.; Leong, V. **S.;** Cooper, N. J. ACSSymp. *Ser.* 1987, 357,6-23. (b) Burger, B. J.; Bercaw, J. E. ACSSymp. *Ser.* 1987, **357,** 79-97.
- (39) Trofimenko, S.; Calabrese, J. C.; Thompson, J. **S.** Inorg. Chem. 1987, 26, 1507-1514.
- **(40)** Trofimenko, S.; Calabrese, J. C.; Kochi, J. K.; Wolowiec,S.; Hulsbergen, F. B.; Reedijk, J. lnorg. Chem. 1992, 31, 3943-3950.
- (a) Kitajima, N.; Fujisawa, K.; Fujimoto, C.; Moro-oka, Y. Chem. Lett.
1989, 421–424. (b) Kitajima, N.; Fujisawa, K.; Fujimoto, C.; Moro-1989, 421–424. (b) Kitajima, N.; Fujisawa, K.; Fujimoto, C.; Moro-oka, S.; Hashimoto, T.; Toriumi, K.; Tatsumi, K.; Nakamura, A. *J. Am.* Chem. *Soc.* 1992, 114, 1277–1291.
- (42) Jeffrey, E. A.; Mole, T. Aust. *J.* Chem. 1968, 21, 1187-1196.

 $\mathbf{A} = [1] = \{ \pi^3 - HB(3, 5 - Pr^1_{2}pz)\}$, L^{II} = $\{ \pi^3 - HB(3 - Bu^1pz) \}$, L^{III} = $\{ \pi^3 - HB(3 - Bu^1z) \}$. ^b Weighting scheme: $w = [\sigma^2(F) + gF^2]^{-1}$.

 $HB{C_3N_2H}$ (CHMe₂)₂}₃], 26.7 [3C, d, ¹J_{C-H} = 127, η ³-HB{C₃N₂H- $(CHMe₂)₂$ ₁₃], 28.4 [3C, d, ¹J_{C-H} = 127, η ³-HB{C₃N₂H(CHMe₂)₂₁₃], 98.1 [3C, d, ¹J_{C-H} = 172, η ³-HB{C₃N₂H(CHMe₂)₂}₃], 157.1 [3C, s, η ³-HB{C₃N₂H(CHMe₂)₂}₃], 161.0 [3C, s, η ³-HB{C₃N₂H(CHMe₂)₂}₃]. IR data: $2552 (\nu_{\rm B-H})$.

Synthesis of $\{\eta^3\text{-}HB(3-Bu^t p z)_{3}\}$ **CdI.** A suspension of Tl $\{\eta^3\text{-}HB(3-Bu^t p z)\}$ $pz)_{3}$ } (1.50 g, 2.6 mmol) in THF (ca. 30 mL) was added to a suspension of CdI2 (1.00 **g,** 2.7 mmol) in THF (ca. 20 mL). A yellow precipitate of TI1 was immediately deposited. The mixture was stirred at room temperature for 30 min and filtered. The filtrate was concentrated and placed at 0 °C, giving colorless crystals of $\{\eta^3-HB(3-Bu^tpz)_3\}CdI$, which were isolated by filtration and dried in vacuo (1 **.O** g, 62%). Anal. Calcd for $\{\eta^3-HB(3-Bu^tpz)_3\}CdI$: C, 40.6; H, 5.5; N, 13.5. Found: C, 39.3; H, 5.1; N, 11.9 (nitrogen analysis was consistently low). IR data: 2946 **(YEH).** 'H NMR (C6D6): *6* 1.44 [27H, **S, (q3-HB(C3N2H2C(CH3),jsl,** 5.83 [3H, d, ${}^{3}J_{\text{H-H}}$ = 2.6, η ³-HB{C₃N₂H₂C(CH₃)₃}], 7.36 [3H, d, ${}^{3}J_{\text{H-H}}$ $= 2.6$, η^3 -HB{C₃N₂H₂C(CH₃)₃}₃]. ¹³C NMR (C₆D₆): *δ* 31.5 [q, ¹J_{C-H} $= 126$, η^3 -HB{C₃N₂H₂C(CH₃)₃}₃], 32.2 [s, η^3 -HB{C₃N₂H₂C(CH₃)₃}₃], 102.3 [d, ¹J_{C-H} = 176; d, ²J_{C-H} = 8; η^3 -HB{C₃N₂H₂C(CH₃)₃}₃], 132.0 $[d, {}^{1}J_{C-H} = 185; d, {}^{2}J_{C-H} = 5; \eta^{3} - HB{C_{3}N_{2}H_{2}C(CH_{3})_{3}}], 165.3$ [s, η^{3} - $HB{C_3N_2H_2C(CH_3)_3}$.

Synthesis of $\{\eta^3\text{-HB}(3-Bu^t\text{-}5-Mepz)\}$ **CdCH₃.** A solution of Cd(CH₃)₂ (excess) in toluene was added to a solution of $T1\{\eta^3-HB(3-Bu^1-5-Mepz)\}$ $(0.50 \text{ g}, 0.8 \text{ mmol})$ in Et₂O (30 mL), resulting in the formation of a black deposit. The mixture was stirred for 1 h at room temperature and filtered. The solvent was removed from the filtrate under reduced pressure and cooled to 0 °C, giving a crop of colorless crystals. The crystals of $\{\eta^3-\}$ HB(3-Bu^t-5-Mepz)₃}CdCH₃ were isolated by filtration and dried in vacuo (0.24 g, 55%). Anal. Calcd for **(q3-HB(3-But-5-Mepz)3)CdCH3:** C, 54.5; H, 7.9; N, 15.3. Found: C, 53.9; H, 7.4; N, 14.6. lH NMR $(C_6D_6):$ *δ* 0.56 [3H, *s*, Cd–CH₃, ²J_{Cd–H} = 71 and 74], 1.40 [27H, *s*, **q3-HB(C3N2H(CH3)CMe3]3],** 2.20 [9H,s, **q3-HB(C3N2H(CH3)CMe3)3],** 5.72 [3H, s, η^3 -HB{C₃N₂H(CH₃)CMe₃}₃]. ¹³C NMR (C₆D₆): δ -6.1 $[q, {}^{1}J_{C-H} = 126, Cd-CH_3]$, 13.1 $[q, {}^{1}J_{C-H} = 128, \eta^3-HB(C_2N_2CH(CH_3)$ -CMe₃}₃], 30.8 [q, ¹J_{C-H} = 127, η ³-HB{C₂N₂CH(CH₃)CMe₃}₃], 31.7 [s, q3-HB(C2N2CH(CH3)CMe3)3], 102.8 [d, *IJc-H* = 172, q3-HB{C2N2CH- (CH3)CMe3)3], 144.1 and 162.4 **[s,** q3-HB(C2N2CH(CH3)CMe3)3]. IR data: 2565 $(\nu_{\rm B-H})$.

Synthesis of $\{\eta^3\text{-}HB(3-Bu^t-5-Mepz)_3\}Cd(\eta^2-O_2NO)$. A fine suspension of K(HB(3-But-5-Mepz)3} (0.75 g, 1.62 mmol) in THF (20 mL) was added to a solution of Cd(NO₃)₂.4(H₂O) (0.68 g, 2.2 mmol) in THF (10 mL). The mixture was stirred overnight at room temperature, giving a white precipitate, which was removed by filtration. The filtrate was concentrated under reduced pressure and placed at 0 °C, giving $\{n^3-\}$ HB(3-Bu^t-5-Mepz)₃}Cd(η ²-O₂NO) as colorless crystals. { η ³-HB(3-Bu^t-5-Mepz)3)Cd(q2-02NO) was isolated by filtration and dried *in* vacuo (0.5 g, 52%). Anal. Calcd for $\{\eta^3-HB(3-Bu^t-5-Mepz)\}$ Cd(η^2-O_2NO): (43) Sheldrick, G.M. SHELXTL, An Integrated System for Solving, Refining C, 48.2; H, 6.7; N, 16.4. Found: C, 48.2; H, 6.5; N, 15.7. lH NMR (C6D6): **6** 1.32 [27H, **s, q3-HB(C3N2H(CH3)CMe3)3],** 2.08 [9H, **s, 7'-**

 $HB(C_3N_2H(CH_3)CMe_3G_3]$, 5.64 [3H, s, $\eta^3-HB(C_3N_2H(CH_3)CMe_3G_3]$. 13 CNMR(C₆D₆): δ 13.1 [q, ¹J_{C-H} = 128, η ³-HB{C₂N₂CH(CH₃)CMe₃}₃], 30.3 $[q, {}^{1}J_{C-H} = 128, \eta^{3}-HB(C_{2}N_{2}CH(CH_{3})CMe_{3}]$, 31.5 $[s, \eta^{3}-]$ $HB{C_2N_2CH(CH_3)CMe_3}$], 103.5 [d, ¹J_{C-H} = 174, $\eta^3-HB{C_2N_2CH}$ -(CH3)CMe3)3], 145.7 and 163.7 **[s, q3-HB(C2N2CH(CH3)CMe3)3].** IR data: 2574 ($\nu_{\text{B-H}}$).

X-ray Structure Determination of $\{\eta^3\text{-HB}(3,5\text{-Pr}^1{}_2\text{pz})_3\}$ **CdI.** Crystal data and data collection and refinement parameters for $\{\eta^3-HB(3,5-Pr)_2$ pz)₃}CdI are summarized in Table 14. A single crystal of $\{\eta^3-HB(3,5-1)\}$ $Prⁱ_{2}pz$)₃}CdI was mounted in a glass capillary that was then placed on a Nicolet R3m diffractometer. The unit cell was determined by the automatic indexing of 25 centered reflections and confirmed by examination of the axial photographs. Intensity data were collected using graphite-monochromated Mo K α X-radiation ($\lambda = 0.71073$ Å). Check relections were measured every 100 reflections, and the data were scaled accordingly and corrected for Lorentz, polarization, and absorption effects (based on ψ scans). The structure was solved using direct methods and standard difference map techniques **on** a Data General NOVA 4 computer using SHELXTL.43 Systematic absences were consistent with the space groups $P2_1/m$ (No. 11) and $P2_1$ (No. 4), but the structure was successfully solved with the choice $P2_1/m$ (No. 11). Most of the hydrogen atoms were located in the difference map after all the non-hydrogen atoms were located and refined anisotropically, but hydrogens **on** carbon were allowed to refine in calculated positions ($d_{C-H} = 0.96$ Å; $U_{iso}(H) = 1.2U_{iso}(C)$). Block-diagonal least-squares refinement converged to $R = 0.0460$ (R_w) = 0.0689). Atomiccoordinates and thermal parameters for non-hydrogen atoms are listed in Table 9, and selected bond distances and angles are listed in Tables 1 and 2.

X-ray Structure Determinationof {\$-HB(3-Butpz)3]CdI. Crystal data and data collection and refinement parameters are summarized in Table 14, and the general procedure is as described for $\{\eta^3-HB(3,5-Pr^i_2pz)_3\}$ -Cdl. Check reflections were measured every 100 reflections, and the data were scaled accordingly and corrected for Lorentz, polarization, and absorption effects (based on ψ scans). Systematic absences were consistent with the space groups $P\bar{4}2₁m$ (No. 113) and $P42₁2$ (No. 90), but the structure was successfully solved with the choice $P\bar{4}2_1m$ (No. 113). Most of the hydrogen atoms were located in the difference map after all the non-hydrogen atoms were located and refined anisotropically, but hydrogens **on** carbon were allowed to refine in calculated positions $(d_{\text{C-H}} = 0.96 \text{ Å}; U_{\text{iso}}(\text{H}) = 1.2 U_{\text{iso}}(\text{C})).$ Block-diagonal least-squares refinement converged to $R = 0.0522$ ($R_w = 0.0623$). Inversion of configuration indicated the correct choice of enantiomorph. Atomic coordinates and thermal parameters for non-hydrogen atoms are listed in Table 10, and selected bond distances and angles are listed in Tables 3 and 4.

and Displaying Crystal Structures from Diffraction Data; University of Gbttingen: Gbttingen, Germany, 1981.

X-ray Structure Determination of $\{\eta^3-HB(3-Bu^t-5-Mepz)_3\}CdCH_3$. Crystal data and data collection and refinement parameters are summarized in Table 14, and the general procedure is as described for *(q3-* HB(3,5-Prⁱ₂pz)₃}CdI. Check reflections were measured every 100 reflections, and thedata were scaled accordingly and corrected for Lorentz, polarization, and absorption effects (based on ψ scans). Systematic absences were consistent uniquely with the space group $I\bar{4}3d$ (No. 220). Most of the hydrogen atoms were located in the difference map after all the non-hydrogen atoms were located and refined anisotropically, but hydrogens on carbon were allowed to refine in calculated positions $(d_{\rm C-H}$ $= 0.96 \text{ Å}; U_{\text{iso}}(H) = 1.2U_{\text{iso}}(C)$. Block-diagonal least-squares refinement converged to $R = 0.0433$ ($R_w = 0.0504$). Inversion of configuration indicated the correct choice of enantiomorph. Atomic coordinates and thermal parameters for non-hydrogen atoms are listed in Table 11, and selected bond distances and angles are listed in Tables 5 and 6.

X-ray Structure Determination of $\{\eta^3$ -HB(3-Bu^t-5-Mepz)₃}Cd(η^2 -O₂-**NO).** Crystal data and data collection and refinement parameters are summarized in Table 14, and the general procedure is as described for ${\eta^3-HB(3,5-Pr^2pz)_3}CdI.$ Check reflections were measured every 100 reflections, and the data were scaled accordingly and corrected for Lorentz, polarization, and absorption effects (based on ψ scans). Systematic absences were consistent uniquely with the space group $P2_1/n$ (No. 14). Most of the hydrogen atoms were located in the difference map after all the non-hydrogen atoms were located and refined anisotropically, but hydrogens on carbon were allowed to refine in calculated positions $(d_{C-H}$ $= 0.96 \text{ Å}; U_{\text{iso}}(H) = 1.2U_{\text{iso}}(C)$. Block-diagonal least-squares refinement converged to $R = 0.0395$ ($R_w = 0.0525$). Atomic coordinates and thermal parameters for non-hydrogen atoms are listed in Table 12, and selected bond distances and angles are listed in Tables 7 and 8.

Conclusion

In summary, a series of **[tris(pyrazolyl)hydroborato]cadmium** complexes of the type $\{\eta^3-HB(3,5-RR'pz)\}$ CdX [3,5-RR'pz =

3-Bu^tpz, 3-Bu^t-5-Mepz, 3,5-Pr¹₂pz; $X = CH_3$, I, NO₃] have been synthesized by the reaction between CdX_2 and either the potassium or thallium reagent M{HB(3,5-RR'pz)₃} (M = K, Tl). The complex **{q3-HB(3-But-5-Mepz)3)Cd(q2-02NO)** exhibits bidentatecoordination of the nitrateligand, incontrast to theunidentate coordination mode that is observed in the related zinc derivative $\{\eta^3-HB(3-Bu^tpz)_3\}Zn(\eta^1-ONO_2)$. In view of the lower activity of cadmium-substituted carbonic anhydrase compared with the zinc enzyme, this result supports the notion that facile access to a unidentate bicarbonate intermediate may be a critical requirement for carbonic anhydrase activity.

Note Added in Proof. Since submission of this manuscript, two other papers concerned with **tris(pyrazoly1)hydroborato** complexes of cadmium have appeared.⁴⁴

Acknowledgment is made to the National Institutes of Health (Grant GM46502) for partial support of this research. G.P. is the recipient of an A. P. Sloan Research Fellowship (199 1-1993), a Camile and Henry Dreyfus Teacher-Scholar Award (1991- 1996), and a Presidential Faculty Fellowship Award (1992-1997). We thank the reviewers for helpful comments.

Supplementary Material Available: Tables of complete crystal and intensity collection data, hydrogen atomic coordinates and temperature factors, bond distances and angles, and anisotropic displacement parameters for $\{\eta^3-HB(3,5-Pr_1^2pz)_3\}CdI$, $\{\eta^3-HB(3-Bu^1pz)_3\}CdI$, $\{\eta^3-HB-$ (3-But-5-Mepz)₃}CdCH₃, and { n^3 -HB(3-But-5-Mepz)₃}Cd(n^2 -O₂NO) (21 pages). Ordering information is given on any current masthead page.

^{(44) (}a) Reger, D. L.; Mason, *S.* **S.; Takats,** J.; Zhang, **X.-W.;** Rheingold, **A.** L.; Haggerty, B. **S.** Inorg. *Chem.* **1993,32,4345-4348.** (b) Reger, **D.** L.; Mason, **S. S.;** Rheingold, **A.L.;** Ostrander, **R. L.** Inorg. *Chem.* **1993, 32, 5216-5222.**